文章编号:1004-7220(2019)01-0077-06

可降解高纯镁骨钉在体降解分析

哈 $\mathbb{H}^{1,2}$, 江 $\hat{\mu}^{1,2}$, 张 阔³, 高元明^{1,2}, 王丽珍^{1,2}, 樊瑜波^{1,2,4}

(1.北京航空航天大学生物与医学工程学院,生物力学与力生物学教育部重点实验室,北京100083;

2.北京航空航天大学 生物医学工程高精尖创新中心,北京 102402;

3.北京大学 医学部,实验动物科学部,北京 100191; 4.国家康复辅具研究中心,北京 100176)

摘要:目的 通过动物实验研究两种高纯镁骨钉的在体降解速率,为高纯镁骨钉的结构设计提供建议。方法 将 有、无螺纹的高纯镁骨钉分别植入新西兰大白兔左、右侧股骨髁处。24 只实验兔随机分为3组,分别在术后8、12、 16 周被执行安乐死。通过 micro-CT 扫描及 Skyscan CT-analyser 软件分析,比较两种不同形状骨钉的在体降解速 率,并分析骨钉降解过程中的应力变化。结果 有螺纹骨钉的初始表面积[(31.70±0.06) mm²]显著大于无螺纹 骨钉的初始表面积[(29.56±0.22) mm²]。两种高纯镁骨钉植入8、12、16 周后,有螺纹骨钉的降解体积比依次为 (26.01±3.44)%、(33.35±5.05)%、(36.84±6.99)%,无螺纹骨钉的降解体积比依次为(22.53±4.78)%、(31.12± 6.59)%、(43.22±9.31)%,在相同时间点,两种骨钉的降解体积比之间不存在明显差异。在骨钉植入的16 周内, 无螺纹骨钉的降解体积与植入时间呈线性关系,有螺纹骨钉的降解体积随植入时间的增加逐渐减小。结论 在低 承力环境下,高纯镁骨钉的不同形状设计对其在体降解速率的影响不明显。 关键词:骨钉;高纯镁;降解速率

中图分类号: R 318.01 文献标志码: A **DOI**: 10.16156/j.1004-7220.2019.01.012

Analysis on High Purity Magnesium Bone Screws in vivo

HA Tong^{1,2}, JIANG Xiong^{1,2}, ZHANG Kuo³, GAO Yuanming^{1,2}, WANG Lizhen^{1,2}, FAN Yubo^{1,2,4}

(1. School of Biological Science and Medical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing 100083, China; 2. Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China; 3. Department of Laboratory Animal Science, Peking University Health Center, Beijing 100191, China; 4. National Research Center for Rehabilitation Technical Aids, Beijing 100176, China)

Abstract: Objective To compare the *in vivo* degradation rates of two different kinds of high purity magnesium bone screws by animal experiments, so as to make some suggestions on structural design of high purity magnesium bone screws. Methods High purity magnesium bone screws with threads and without threads were implanted into femoral condyles of New Zealand rabbits separately. Twenty-four rabbits were randomly divided into 3 groups. They were euthanized at 8, 12 and 16 weeks after operation, respectively. The *in vivo* degradation rates of bone screws with two different shapes were compared through micro-CT scanning and Skyscan CT-analyser software, and the stress changes during the progress of bone screw degradation were analyzed. Results The ini-

收稿日期:2018-02-08;修回日期:2018-03-31

基金项目:国家自然科学基金项目(11572029)

通信作者:王丽珍,副教授,硕士研究生导师,E-mail: lizhenwang@ buaa.edu.cn;樊瑜波,教授,博士研究生导师,E-mail: yubofan@ buaa.edu.cn

tial surface area of threaded screws [(31.70 ± 0.06) mm²] was significantly greater than that of the non-threaded ones [(29.56 ± 0.22) mm²]. After 8, 12 and 16 weeks, the volume loss ratios of the threaded screws were $(26.01\pm3.44)\%$, $(33.35\pm5.05)\%$, $(36.84\pm6.99)\%$, respectively, and the volume loss ratios of the non-threaded screws were $(22.53\pm4.78)\%$, $(31.12\pm6.59)\%$, $(43.22\pm9.31)\%$, respectively. At the same time point, there were no significant differences in the volume loss ratio between two kinds of screws. The relationship between the volume reduction and the implantation time was linear for non-threaded screws and gradually decreasing for threaded screws. Conclusions Under the low-bearing condition, different structural design for high purity magnesium screws has no obvious effect on their degradation rate *in vivo*.

Key words: bone screws; high purity magnesium; degradation rate

近年来,可降解金属镁及其合金已成为生物材 料领域广泛研究的热门材料,其在骨科植入体的应 用方面具有显著的优势。与传统的金属骨科植入 体材料(如不锈钢、钛合金、钴铬合金等)相比,金属 镁基材料具有可降解性,无需二次手术取出^[1];具 有较低、与骨组织接近的弹性模量,可有效减少"应 力遮挡"现象^[2];同时,金属镁基材料具有很好的生 物相容性,其降解产物镁离子具有增强骨整合效 果^[34]以及促进骨折愈合的作用^[5]。镁基金属材料 应用于骨科植入体的关键问题在于其降解速率,适 当的降解速率可使植入体在骨折愈合过程中保持 足够的力学强度,避免发生二次骨折^[6]。

镁的降解受到多种因素的影响。Witte 等^[7]研 究表明,镁合金在体内和体外的降解速率存在较大 差异,故研究其在体降解速率更具参考价值。近些 年,已出现较多针对镁基材料作为骨科植入体的在 体降解研究,例如:Witte 等^[7] 报道了 LAE442 和 AZ91D 镁合金棒植入豚鼠股骨腔内的降解速率: Schaller^[8]对比了有、无涂层条件下 WE43 镁合金骨 钉/骨板系统植入小型猪额骨后的降解速率;Cheng 等^[9-10]和 Ishikawa 等^[11]分别对高纯镁植入体植入 兔股骨后的降解情况进行报道;Nina 等^[12]通过主 观评分的分析方式比较 MgCa0.8 光滑与有螺纹柱 体在体的降解情况。但目前针对不同形状设计对 在体降解速率影响的定量研究鲜有报道。骨科植 入物种类繁多,其中棒状骨针和螺纹状骨钉是临床 上应用广泛的两种骨科内固定物^[13]。本文通过定 量比较两种镁基骨科螺钉的在体降解速率,将有、 无螺纹两种形状的高纯镁螺钉植入兔股骨髁后对 其进行为期16周的观察,并采用有限元仿真方法 计算骨钉的应力变化,探讨不同螺钉形状对高纯镁

骨科植入体在体降解速率的影响,为镁基骨钉结构 设计提供参考依据。

1 材料与方法

1.1 材料及动物实验

制备骨钉所使用的材料为高纯镁(99.99%), 由东莞宜安科技股份有限公司提供。两种骨钉的 直径均为2 mm,长7 mm,其中有螺纹骨钉的内径为 1.3 mm,螺距为1 mm(见图1)。术前所有骨钉经 γ 射线辐照灭菌,辐照剂量为25 kGy。

图 1 两种不同形状的高纯镁骨钉

Fig.1 High purity magnesium screws with two different shapes

(a) Screw without threads, (b) Screw with threads,

(c) Volume of interest for analysis

实验动物选用 24 只雄性新西兰大白兔, 4~5月龄,体质量约为 3 kg,由北京金牧阳实验动 物养殖有限责任公司提供。术前通过耳缘静脉注 射戊巴比妥钠(30 mg/kg)对实验动物进行麻醉。 剃除后肢股骨髁周围的兔毛,使手术部位的皮肤暴 露;在股骨髁外侧做长约 2 cm 的手术切口;利用钻 孔器在股骨髁外侧钻孔,植入骨钉,左股骨侧植入 有螺纹骨钉,右股骨侧植入无螺纹骨钉;最后,逐层 缝合伤口,并将兔放回饲养间内,按照实验动物的 饲养要求,维持兔的正常活动和饮食。

1.2 Micro-CT 断层扫描及体积分析

术后 8、12、16 周,分别处死 8 只兔,取植有骨钉的两侧股骨,进行 Micro-CT(Skyscan1076, SkyScan 公司,比利时)扫描观察,扫描精度为 9 μm,扫描电压为 70 kV。将扫描得到的图像用自带的 NRecon 软件进行重建,得到断层图像。截取两种骨钉螺杆部分(长 4.2 mm)为研究区域,利用 Skyscan CT-analyser软件 对断层图像进行分析,通过阈值设定分离骨钉与骨组 织,建立骨钉的三维模型,并计算其体积 V₁。用骨钉 的相对降解体积来衡量其在体降解速率:

$$\Delta V = \frac{V_0 - V_1}{V_0} \times 100\%$$
(1)

式中: ΔV 为体积变化百分数; V₀ 为相同长度螺杆植 入前的初始体积。骨钉初始体积取术前每组随机 抽取骨钉各5 个体积的均值。

1.3 统计学分析

使用 SPSS 21.0 对结果进行统计学分析,实验 结果用均值±标准差表示,同一时间点有、无螺纹骨 钉参数的组间比较采用 t 检验,P<0.05 表示差异有 统计学意义。

1.4 有限元仿真

对健康新西兰大白兔后肢进行 Micro-CT 扫描 (体质量约3kg),扫描精度为18µm。分别选取植 入0、8、12、16周有螺纹和无螺纹骨钉各1个,采用 医学图像处理软件 Mimics 17.0重建出兔股骨、胫 骨及骨钉的三维几何模型。根据 Micro-CT 扫描数 据及实验得到的兔静止站立时膝关节、胫骨与地面 之间的角度,将股骨、胫骨及骨钉模型进行配合,并 采用四面体单元对模型进行网格划分。

股骨与胫骨之间设定有限变形接触,忽略关节内的摩擦。由于骨的形变极小,故将非植钉的胫骨 假设为刚体。将骨组织及高纯镁定义为各向同性 线弹性材料,其中皮质骨和松质骨的弹性模量分别 为9.0、0.7 GPa, 泊松比均为0.3; 高纯镁的弹性模 量为40 GPa, 泊松比为0.35^[2,14-15]。利用有限元软 件 ABAQUS 6.14(Simulia 公司,美国)对植有不同 降解体积比骨钉的有限元模型进行分析。模型的 有效性通过 Grover 等^[16]报道的兔膝关节结果进行 验证。模型将实验获得的测力台反作用力数据作 为模型的边界, 计算两种骨钉在体降解不同时间后 的应力分布情况。

2 结果

通过分析 Micro-CT 扫描图像结果,得到有、无 螺纹骨钉的初始体积与表面积。相较于无螺纹骨 钉,有螺纹骨钉具有较大的表面积和较小的体积, 两组数据之间差异具有显著的统计学意义(见 表1)。

表1 骨钉的初始表面积与体积(*P<0.05)

Tab.1 Initial surface areas and volumes of screws

组别	表面积/mm ²	V_0/mm^3
有螺纹骨钉	31. 70±0. 06 *	10.08±0.04 *
无螺纹骨钉	29.56±0.22	13.58±0.05

实验兔在术后均恢复良好,未出现伤口感染现 象;植入骨钉固定良好,没有骨钉脱落的情况发生; 在整个饲养过程中,观察植入镁钉周围没有明显的 气泡产生。骨钉降解后的三维结构如图 2 所示。 有螺纹骨钉的降解主要发生在螺纹处,植入 16 周 后,螺纹形状已明显减弱;无螺纹螺钉在植入 8 周 后,腐蚀较为均匀,在 12、16 周时,一些位点出现腐 蚀坑,所有骨钉在植入 16 周后均保持完整,未出现 断裂现象。

图 2 骨钉植入 8、12、16 周后三维图像

Fig.2 Three-dimensional images of the implanted bone screws at 8, 12 and 16 weeks (a) At 8 weeks, (b) At 12 weeks, (c) At 16 weeks

有螺纹骨钉植入 8、12、16 周后,降解体积比分别 为(26.01 ± 3.44)%、(33.35 ± 5.05)%、(36.84± 6.99)%,降解速率呈随植入时间的增加逐渐减小的 趋势;无螺纹骨钉植入 8、12、16 周后,降解体积比分 别为(22.53±4.78)%、(31.12±6.59)%、(43.22± 9.31)%,降解速率与植入时间呈线性关系。比较 同一时间点有、无螺纹骨钉的降解体积比发现,第 8、12 周,有螺纹组稍大于无螺纹组,在第 16 周时有 螺纹组的降解体积比小于无螺纹组,但在上述 3 个 时间点中,这两种骨钉的降解体积分数间没有明显 的统计学差异[见图 3(a)]。

通过有限元计算,获得有、无螺纹骨钉在不同 降解体积比条件下的应力分布情况。计算骨钉全 部积分点应力的平均值,比较不同降解体积比骨钉 在体条件下的应力变化情况。结果显示,在为期16 周的在体实验观察中,相同的降解体积比条件下, 有螺纹骨钉的平均应力大于无螺纹骨钉。且随着 降解体积比的增加,无螺纹骨钉的平均应力逐渐增 加,但变化范围不大(1.69~2.86 MPa);有螺纹骨 钉植入12 周内,随着降解体积比的增加,平均应力

Fig.3 Ratio of volume loss and stress changes of screws with and without threads (a) Ratio of volume loss, (b) Average stress of integration points of screws

也呈增加趋势,变化范围不明显(2.19~3.17 MPa),但其在植入16周时,所受应力明显增加,达到5.22 MPa[见图3(b)]。

3 讨论

金属镁及其合金是具有潜力的制备骨科植入 体的生物材料,限制其应用的主要因素是镁及合金 的降解速度较快不能与骨折愈合所需强度匹配,此 外合金元素的种类、微环境以及加工工艺等会影响 镁基材料的降解速率[17]。由于在体环境的复杂性, 将镁及镁合金应用于骨科植入体所面临的一个重 要问题就是预测其在体条件下的降解行为。研究 表明,镁及镁合金的体内外降解速率存在差异。 Witte 等^[7]依据 ASTM 浸泡实验标准进行体外实验. 与植入豚鼠股骨内的在体结果相比,发现 LAE442 和 AZ91D 两种镁合金的体外降解速率远远大于在 体降解速率。为了更好模拟在体环境, Schinhammer 等^[18]用 CO, 气体代替缓冲液调节溶液的 pH 值,结 果显示,镁合金的体外降解速率是体内降解速率的 3 倍。Youngmi 等^[19]采用装有模拟体液且循环加载 的装置模拟在体环境,体外降解速率结果比实际植 入大鼠背部和狗胫骨的纯镁、Mg-Zn-Mn 降解速率 高10倍左右。目前来说,尚未有系统的体外实验方 法和准则来消除体外和在体条件下镁基材料降解 速率之间的差异^[20]。因此,研究镁基材料的在体降 解速率更具参考价值。

研究表明,纯化金属镁是一种有效的降低降解 速率的方法^[21-22]。近年来,已有一些将高纯镁应用 于骨科植入体的研究,多数动物实验结果均表明高 纯镁作为骨科植入体材料具有较为均匀的降解特 性以及良好的骨整合作用^[9,23]。Zhao等^[24]报道了 临床上使用高纯镁骨钉固定骨移植物治疗股骨头 坏死,结果也显示高纯镁骨钉具有可接受的降解速 率,既满足手术初期的固定需求,同时由于没有明 显的气体生成,不会影响移植物与组织的融合,降 解产物镁离子反而会促进周围骨组织的生成。本 实验观察到与上述研究相一致的结果,植入高纯镁 骨钉一段时间后(8、12、16周),未发现明显气泡,且 有、无螺纹骨钉的降解体积比分别与文献[10,23] 中的结果相似。

在实际的临床应用中,骨钉松动或断裂是导致 手术失败较为常见的原因。而导致骨钉松动和断 裂的原因包括骨钉植入初期与骨组织结合不牢固. 以及骨钉或植入体的局部应力过大等[25-26]。良好 的骨钉结构可以有效减轻甚至避免上述不良情况 的发生。漆伟等^[25]利用有限元模拟的方法证明,椎 弓根螺钉在一定的长度范围内,增加螺钉长度可有 利于改善螺钉及骨质上的轴向应力分布。Tsuang 等[26] 通过对比4种相同长度、不同螺纹高度(全螺 纹、螺帽近端 1/3、1/2 以及 2/3 无螺纹) 螺钉的体 外拔出试验,证明不同的螺纹设计会显著影响螺钉 的拔出力以及所需的能量消耗。结合镁基材料的 应力腐蚀开裂以及疲劳腐蚀的降解机制[27],镁基骨 科植入体的结构设计除了会影响其固定情况外,可 能还会对镁基骨钉的降解情况产生影响。Yang 等[28]通过体外实验证明,拉伸和压缩会加速镁合金 的降解。目前,针对镁基骨钉不同结构对其在体降 解速率影响的研究报道较少,本文通过将有、无螺 纹两种结构不同、表面积存在显著性差异的高纯镁 骨钉植入兔股骨髁,比较两种骨钉的在体体积变化 率,同时利用有限元仿真方法分析不同降解体积比 骨钉的应力变化。结果发现,骨钉植入16周内,有 螺纹骨钉的平均应力高于无螺纹骨钉 但两者之间 的体积变化率不存在显著性差异,说明实验中使用 的两种高纯镁骨钉结构,即使表面积和所受应力存 在差别,但对其植入初期的在体降解体积变化率无 显著影响,这与 Han 等^[10]报道"在完整及骨折两种 应力条件下,高纯镁骨钉的降解及骨整合情况均没 有明显差别"的结论相似。从目前实验中两种螺钉 的降解体积率与植入时间的关系来看,这两种结构 螺钉的在体降解规律可能存在差别,有螺纹骨钉具 有降解体积率随植入时间的增加而逐渐减小的趋 势,与 Han 等^[29]针对高纯镁骨钉植入兔股骨髁的 研究结果相似:而无螺纹骨钉的降解体积率与植入 时间呈线性关系。实验中发现的无螺纹骨钉在体 降解规律与 Ishikawa 等^[11]研究块状纯镁植入兔股 髁内的降解规律的结果一致。而分析骨钉应力与 降解体积比的关系发现,在骨钉植入12周内,有、 无螺纹骨钉的平均应力变化均不明显,且两者在同 一降解体积比条件下,有螺纹骨钉平均应力稍大于 无螺纹骨钉。本实验中两种骨钉的材料和植入位

置相同,但16周内的降解趋势有所差别,推测可能 是由于形状差异导致的应力差别,对其降解产生了 影响。应力影响骨钉在体降解的机制可能是造成 高纯镁材料的应力腐蚀开裂;也有可能是不同的应 力环境对周围骨组织的再生产生影响,影响植入体 与周围降解环境的接触,进而影响骨钉的降解速率。 由于实验观察的16周内,两种骨钉的应力变化范围 限于1.69~3.17 MPa,且实验中的植钉位置为非承重 区,后续计划进行植入时间更长、承重条件多样的实 验观察和总结,为骨钉的结构设计提供参考。因此, 基于本实验得到的结果,在低承力环境下,猜测在复 杂的在体环境中,骨钉结构变化导致的应力条件改 变,在植入初期对高纯镁的降解影响不大。

4 结论

高纯镁是一种在骨科应用中极具潜力的可降 解金属材料。高纯镁骨钉的结构设计,除了在植人 初期对固定效果、骨组织及骨钉应力分布具有重要 影响外,不同结构可能会对高纯镁骨钉的在体降解 情况产生影响,继而影响固定效果。因此,比较不 同形状高纯镁骨钉的在体降解速率十分必要。本 文通过将有、无螺纹两种高纯镁骨钉植入兔股骨 髁,分析比较两种骨钉在术后 8、12、16 周的降解体 积比,并计算不同降解体积比骨钉的应力变化。通 过实验及结果分析发现,高纯镁作为骨科植入体具 有良好的生物相容性;不同形状、表面积存在差异 的骨钉结构在低承力条件下对高纯镁在体降解的 体积变化影响不大。

参考文献:

- [1] WILLBOLD E, WEIZBAUER A, LOOS A, et al. Magnesium alloys: A stony pathway from intensive research to clinical reality. Different test methods and approval-related considerations [J]. J Biomed Mater Res, 2017, 105(1): 329-347.
- [2] STAIGER MP, PIETAK AM, HUADMAI J, et al. Magnesium and its alloys as orthopedic biomaterials: A review
 [J]. Biomaterials, 2006, 27(9): 1728-1734.
- [3] GALLI S, STOCCHERO M, ANDERSSON M, et al. The effect of magnesium on early osseointegration in osteoporotic bone: A histological and gene expression investigation [J]. Osteoporosis Int, 2017, 28(7): 2195-2205.
- [4] WANG J, XU J, SONG B, et al. Magnesium (Mg) based

interference screws developed for promoting tendon graft incorporation in bone tunnel in rabbits [J]. Acta Biomater, 2017, 63: 393-410.

- [5] ZHANG Y, XU J, RUAN YC, et al. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats [J]. Nat Med, 2016, 22 (10): 1160-1169.
- [6] 郑玉峰,顾雪楠,李楠,等.生物可降解镁合金的发展现状 与展望[J].中国材料进展,2011,30(4):30-43.
- [7] WITTE F, FISCHER J, NELLESEN J, et al. In vitro and in vivo corrosion measurements of magnesium alloys [J]. Biomaterials, 2006, 27(7): 1013-1018.
- [8] SCHALLER B, SAULACIC N, IMWINKELRIED T, et al. In vivo degradation of magnesium plate/screw osteosynthesis implant systems: Soft and hard tissue response in a calvarial model in miniature pigs [J]. J Craniomaxillofac Surg, 2016, 44(3): 309-317.
- [9] CHENG P, ZHAO C, HAN P, et al. Site-dependent osseointegration of biodegradable high-purity magnesium for orthopedic implants in femoral shaft and femoral condyle of New Zealand rabbits [J]. J Mater Sci Technol, 2016, 32 (9): 883-888.
- [10] HAN P, CHENG P, ZHAO C, et al. Comparative study about degradation of high-purity magnesium screw in intact femoral intracondyle and in fixation of femoral intracondylar fracture [J]. J Mater Sci Technol, 2017, 33(3): 305-310.
- [11] ISHIKAWA A, TAMURA J, AKAHORI T, *et al.* Biodegradation of pure magnesium and bone tissue reaction in rabbit femur 1 year results of 3D micro-CT monitoring and histological observation [J]. Mater Trans, 2017, 58(1); 118-122.
- [12] NINA VDH, BORMANN D, LUCAS A, et al. Comparison of the *in vivo* degradation progress of solid magnesium alloy cylinders and screw-shaped magnesium alloy cylinders in a rabbit model [J]. Mater Sci Forum, 2010, 638-642: 742-747.
- [13] 邱贵兴. 骨科植入物在临床上的应用及其不良反应事件 [J]. 中国医疗器械信息, 2006, 12(7): 1-3.
- [14] GUAN H, STADEN RCV, JOHNSON NW, et al. Dynamic modelling and simulation of dental implant insertion process-A finite element study [J]. Finite Elem Anal Des, 2011, 47(8): 886-897.
- FRANKLYN M, FIELD B. Experimental and finite element analysis of tibial stress fractures using a rabbit model [J].
 World J Orthop, 2013, 4(4): 267-278.
- [16] GROVER DM, CHEN AA, HAZELWOOD SJ. Biomechanics of the rabbit knee and ankle: Muscle, ligament, and joint contact force predictions [J]. J Biomech, 2007, 40 (12): 2816-2821.

- [17] ZENG R, DIETZEL W, WITTE F, et al. Progress and challenge for magnesium alloys as biomaterials [J]. Adv Eng Mater, 2008, 10(8): B3-B14.
- [18] SCHINHAMMER M, HOFSTETTER J, WEGMANN C, et al. On the immersion testing of degradable implant materials in simulated body fluid: active pH regulation using CO2 [J]. Adv Eng Mater, 2013, 15(6): 434-441.
- [19] KOO Y, LEE HB, DONG Z, et al. The effects of static and dynamic loading on biodegradable magnesium pins in vitro and in vivo [J]. Sci Rep, 2017, 7(14710):1-9.
- [20] SANCHEZ AHM, LUTHRINGER BJC, FEYERABEND F, et al. Mg and Mg alloys: How comparable are *in vitro* and *in vivo* corrosion rates? A review [J]. Acta Biomater, 2015, 13: 16-31.
- [21] SONG G. Control of biodegradation of biocompatable magnesium alloys [J]. Corros Sci, 2007, 49(4): 1696-1701.
- [22] WANG H, SHI Z. In vitro biodegradation behavior of magnesium and magnesium alloy [J]. J Biomed Mater Res, 2011, 98B(2): 203-209.
- [23] CHAYA A, YOSHIZAWA S, VERDELIS K, et al. In vivo study of magnesium plate and screw degradation and bone fracture healing [J]. Acta Biomater, 2015, 18: 262-269.
- [24] ZHAO D, HUANG S, LU F, et al. Vascularized bone grafting fixed by biodegradable magnesium screw for treating osteonecrosis of the femoral head [J]. Biomaterials, 2016, 81: 84-92.
- [25] 漆伟, 雷伟, 严亚波. 椎弓根螺钉长度变化对螺钉-骨复合体 模型应力影响的三维有限元分析研究 [J]. 医用生物力学, 2010, 25(3): 206-211.
 QI W, LEI W, YAN YB. Three dimensional finite element analysis of stress distribution on continuously varying of length of pedicle screw [J]. J Med Biomech, 2010, 25 (3): 206-211.
- [26] TSUANG FY, CHEN CH, WU LC, et al. Biomechanical arrangement of threaded and unthreaded portions providing holding power of transpedicular screw fixation [J]. Clin Biomech, 2016, 39: 71-76.
- [27] GASTALDI D, SASSI V, PETRINI L, et al. Continuum damage model for bioresorbable magnesium alloy devices-Application to coronary stents [J]. J Mech Behav Biomed Mater, 2011, 4(3): 352-365.
- [28] ZHENG Y, LI Y, CHEN J, et al. Effects of tensile and compressive deformation on corrosion behaviour of a Mg-Zn alloy [J]. Corros Sci, 2015, 90: 445-450.
- [29] HAN P, CHENG P, ZHANG S, et al. In vitro and in vivo studies on the degradation of high-purity Mg (99.99wt.%) screw with femoral intracondylar fractured rabbit model [J]. Biomaterials, 2015, 64: 57-69.