Stabilization Regulation Strategy During Standing Based on Linear and Nonlinear Analysis
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Objective To explore the regulation strategy of human standing stability from linear and nonlinear perspectives. Methods Sixteen healthy male subjects were recruited and required to stand normally or stand with closed eyes, stand on foam pad with open eyes or closed eyes for a period of 30 s on the balancer. The linear and nonlinear characteristics of plantar COP (center of pressure) trajectory during standing with different interference factors were analyzed by spatio-temporal parameters, trajectory approximate entropy and wavelet transform. Visual × proprioceptive repeated measures ANOVA was used to compare the linear and nonlinear characteristics of COP trajectory between the interference condition (visual interference, proprioceptive interference and visual and proprioceptive interference) and normal standing. Results For linear index, the COP trajectory length, trajectory rate and C90 area during closed-eye standing, unstable standing and closed-eye unstable standing were all higher than those during normal standing (P<0.05). The average offset of C90 area and that in mediolateral (MP) and anteroposterior (AP) directions under three interference modes had no significant changes compared with that during normal standing (P>0.05). For nonlinear index, in MP and AP directions, there was no significant difference in approximate entropy between closed-eye standing, unstable standing and closed-eye unstable standing compared with that during normal standing pressure center track (P>0.05). For frequency domain index in MP direction, visual interference increased the energy weight of the intermediate frequency, low frequency and sub-low frequency bands (P<0.05), and decreased the ultra-low frequency energy weight (P<0.05). The energy weight of three frequency bands during proprioceptive interference was not different from that of normal standing (P>0.05), while the energy weight of intermediate frequency, low frequency and sub-low frequency increased (P<0.05), while that of ultra-low frequency decreased (P<0.05). For frequency domain index in AP direction, the sub-low frequency energy decreased (P<0.05) and ultra-low frequency energy increased (P<0.05) after visual interference compared with that during normal standing. The energy weights of intermediate frequency, low frequency and sub-low frequency of proprioceptive interference, visual and proprioceptive interference increased (P<0.05), while that of ultra-low frequency decreased (P<0.05). Conclusions For healthy people, the closed-loop control mechanism of lower frequency band is dominant during standing, and the interference of external signal input will not change the complexity of COP trajectory, in which visual information interference has an obvious effect on ML direction, proprioceptive information interference has an obvious effect on AP direction. When standing is disturbed, the energy weight of higher frequency band of open-loop control mechanism increases, and shaking amplitude and speed of the body become larger.

    Reference
    Related
    Cited by
Get Citation

BAI Xiaotian, HUO Hongfeng. Stabilization Regulation Strategy During Standing Based on Linear and Nonlinear Analysis[J]. Journal of medical biomechanics,2023,38(5):1003-1009

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 07,2022
  • Revised:August 30,2022
  • Adopted:
  • Online: October 25,2023
  • Published:
Article QR Code