VWF Damage Based on Novel Maglev Taylor-Couette Blood-Shearing Circulation Platform
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Objective To study von Willebrand factor(VWF) damage based on a novel Maglev Taylor-Couette blood-shearing device. Methods The magnetic levitation (maglev) Taylor-Couette blood-shearing device was designed, and the blood-shearing platform was built. Fresh porcine blood was tested in circulation loop for 1 hour at laminar flow state. VWF damage was assessed by analyzing sample through Western blot and enzyme-linked immunosorbent assay. Results With the increase of exposure time and shear stress, a large number of high molecular weight VWF multimers were degraded into low molecular weight VWF. The maximum rate of degradation was 569%. When the shear stress increased from 18 Pa to 55 Pa, the ratio of VWF-Rco to VWF-Ag decreased from 45.7% to 32.8%. ConclusionsCompared with initial sample, the VWF damage was mainly manifested by the decrease of high molecular weight VWF and the decrease of VWF activity, and VWF-Ag did not change significantly. The novel maglev Taylor-Couette blood-shearing device can quantitatively control the flow parameters (exposure time and shear stress), and be used for blood damage research in vitro, thus providing references for the design and optimization of extracorporeal membrane oxygenation and blood pump.

    Reference
    Related
    Cited by
Get Citation

LU Bin, ZHANG Liudi, MEI Xu, YIN Chengke, JIANG Qiubo, HUAN Nana, WU Peng. VWF Damage Based on Novel Maglev Taylor-Couette Blood-Shearing Circulation Platform[J]. Journal of medical biomechanics,2022,37(4):699-705

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 29,2021
  • Revised:November 05,2021
  • Adopted:
  • Online: August 25,2022
  • Published: