Objective To study the effects of mechanical load on in vivo degradation performance of high-purity magnesium (HP Mg, 99.99 wt.%) quantitatively. Methods Cylindrical Mg specimens, with a 2 mm diameter and a 14 mm length, were mounted in polyetheretherketone (PEEK) rings to bear compressive stresses [(6.2±0.6) MPa], tensile stresses [(4.6±0.1) MPa] or no stress (as control). The specimens under different stress states were implanted subcutaneously in dorsal abdominal regions of SD rats for 4 weeks. The mass loss, residual volume and surface morphology of the specimens and staining of surrounding soft tissues were used to analyze the degradation rate of HP Mg. Results Specimens and rings were completely encapsulated by membranous tissues after implantation for 4 weeks. No significant differences in the degradation rates were noted between specimens bearing stress and the control. The corrosion layers of specimens under each stress state were uniform. Conclusions The compressive and tensile stresses (4-6 MPa) could not affect significantly HP Mg degradation performance in vivo. The research findings provide theoretical references for the design and clinical application of Mg-based degradable implants.
Reference
Related
Cited by
Get Citation
GAO Yuanming, ZHANG Kuo, WANG Lizhen, LI Linhao, SUN Haiming, FAN Yubo. In Vivo Degradation Performance of High-Purity Magnesium Subjected to Quantitative Mechanical Load[J]. Journal of medical biomechanics,2018,33(5):417-422