Abstract:Objective To investigate the interaction between vessel and vena cava filter (VCF) with different numbers of support poles and the influence on blood flow during its implantation by using finite element method and computational fluid dynamics method, so as to provide more scientific guidance for intervention treatment and design & development of the filter. Methods Three kinds of VCF models with 4, 6, 8 support poles were established by using Solidworks, respectively. The stress distribution and radial support stiffness of the vessel and filter under working condition were then simulated and analyzed by using ABAQUS. The distributions of blood flow velocity, pressure and shear stress after VCF implantation were simulated by using Fluent. Results All the mechanical and fluid properties of the three kinds of VCFs were within the scope of security. The comprehensive mechanical performance of the 6-pole filter was better, while for the 8 pole-filter, it showed larger stress under working condition, larger support intensity, higher exit velocity, larger shear stress on the filter mesh, and the trail of the flow was changed from laminar to transition flow, which might cause some damage to the vessel wall. The 4 pole-filter under working condition had a larger stress on the vessel, while its exit velocity was lower, which could be likely to cause local damage on the vessel wall, and disadvantageous to accurately positioning the filter in diseased region of the vessel. Conclusions The 6 pole-filter has a superior hemodynamic effect and comprehensive mechanical properties, which reduces the potential possibility of damage to the vessel wall caused by implantation of the filter. The simulation analysis on VCF provides a good reference for design of the filter and its intervention treatment in clinic.