Abstract:Objective To study the variation of rupture distance of liquid bridge with different liquid volume, spherical radius and solid-liquid contact angle. Methods The process of stretching and rupture of liquid bridge between a sphere and a plane was simulated by Surface Evolver program. The rupture distance of liquid bridge which depended on the liquid volume, radius of sphere and wetting property of surface was calculated from the simulation. Results The theoretical formula of rupture distance which was related to the liquid volume, spherical radius and contact angle was derived based on the formula given by Lian and Willett, et al. The simulation result was in agreement with the theoretical result when the solid surface was hydrophilic (error <4.3%); when the solid surface was hydrophobic, the error between the simulation and theoretical results showed to be greater with the hydrophobicity enhanced. Conclusions The quasi-static process of stretching and rupture of liquid bridge can be well simulated by Surface Evolver program and the rupture distance can be given accurately from the simulation result. The error between the simulation and theoretical results in rupture distance on the hydrophobic surface appeared significantly increasing, because the formula given by Lian and Willett, et al was derived from data based on the hydrophilic surface.