Abstract:Calcium is not only the important signaling molecule within and between bone cells, but also the primary component of extracellular matrix in bone. It has been demonstrated during the past over 100 years that mechanical stimulations can regulate the molecular signal transduction and intercellular communication in bone cells as well as the bone mineralization and resorption at tissue level, but further more researches are still needed to give insight into the mechanism of mechanical stimulation-induced bone remodeling. This paper will summarize the related works on the following aspects: (1) the primary experimental approaches for studying mechanical stimulation induced calcium response and transfer in osteoblasts, (2) the calcium sources and mechanism of calcium response in osteoblasts, (3) the intercellular calcium transfer pathways and (4) characteristic parameters of calcium response and transfer in osteoblasts. Finally, several potential research directions in this field are presented in the paper.