Effects of adhesive thickness on internal stress distribution in full-ceramic crowns
Article
Figures
Metrics
Preview PDF
Reference
Related
Cited by
Materials
Abstract:
Objective The objective of this study is to investigate the effects of the thickness of the adhesives (3M ESPE RelyX ARC) on the internal stress distribution of the IPS Empress II full-ceramic crowns using Finite Element Analysis (FEA). Methods A dummy Empress II ceramic crown restoration of the mandible right first molar was prepared according to standard dental process. Followed by micro-CT scanning, four 3D numerical models with cement thickness 60, 90, 120 and 150μm were established. The models were subjected to four loading conditions and stresses in veneer and core layers were presented. Results Numerical results indicate that when adhesive thickness increases from 60μm to 90μm, the maximum principal stress either in veneer or core decreases. However, when thickness increases to 150μm, stress variation trends differ from adhesives. Conclusion The normal stresses in adhesives remain a low level when the thickness varies from 90μm to 120μm, while the shear stress is less sensitive to the thickness when it exceeds 90μm. There is an optimal thickness which can reduce the tensile stress in the core and veneer. Attention should be paid to the shear strength of the adhesives since the shear stress could cause failure in the adhesive layer.
LIN Bin, LU Cheng-lin, ZHANG Xiu-yin, ZHANG Dong-sheng. Effects of adhesive thickness on internal stress distribution in full-ceramic crowns[J]. Journal of medical biomechanics,2010,25(1):56-62