Abstract:Objective This method is explored in solving the mechanical component parameters of models referring to body landing impact with system identification,and the validity and practicability of relative method is validated combined with simulation analysis. Methods the body is simplified to a muster parameter physical system of one degree freedom with a wobbling mass and a rigid mass, and then a mathematical model with state space method is lead out, thus the generalized equation is obtained in virtue of n4sid sub-space system identification methods,and more the estimated values of mechanical component parameters of relative model is find out by the use of constrained optimization method. Results the wobbling mass augments accompanied with the increased landing height;there are likely ranges for the estimated values of elastic and viscos component parameters;there are better fitting degrees between output produced by simulation computations and practical output of the body system. Conclusions it is a effective method to give the estimated values of mechanical component parameters reflected the body cushiony characters in the two-mass and one degree freedom system model with the system identification methods.