Abstract:Objective Using a lens-induced method to establish myopia model in guinea pig to study the changes of viscoelastic properties of sclerotic fibroblasts in the experimental eye model. Methods 10 two-week-old guinea pigs were lens-induced monocular. A spherical lenses of -10.00D were wear to the unilateral eye with the other eye treated as self-control. 10 two-week-old guinea pigs were randomly chosen as normal-control. The sclerotic fibroblasts of each group were cultured and passed for 1 generations in vitro. All this were studied by light microscope and pathology. This study utilized the micropipette aspiration technique with a viscoelastic solid model to investigate the viscoelastic properties of scleral fibroblasts from normal and myopia guinea pigs sclera. Results Eyes became myopic (-9.08±0.21) D and elongated (1.91±0.07) mm 45 days after insertion of the lenses (p<0.05). Experimental studies have shown that the viscoelastic properties of the scleral fibroblasts in LIM group exhibited a significantly higher equilibrium modulus E(subscript ∞), instantaneous modulus E0, and apparent viscosity μ (E(subscript ∞)=0.43555±0.13043kPa, E0=0.76691±0.21674kPa, μ=4.17255±1.59239kPa?s, n=58) compared with normal-control group (E(subscript ∞)=0.30055± 0.07713kPa, E0=0.52553±0.14053kPa, μ=1.94124±1.03281kPa?s, n=52, p<0.05) and self-control group (E(subscript ∞)=0.34792±0.09709kPa, E0= 0.59722±0.18118kPa, μ=2.17855±1.22801kPa?s, n=49, p<0.05). Conclusions Lenses can induce axial growth and lead to myopia in young guinea pigs. The results suggest that the scleral fibroblasts become stiffer with the development of myopia.