面向手过头任务的残差神经网络肌肉疲劳预测模型
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

基础加强计划技术领域基金项目(2021-JCJQ-JJ-1026)


A Residual Neural Network Muscle Fatigue Prediction Model for Overhead Tasks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 探讨手过头任务中上肢关节角度与肌肉疲劳之间的关系,并构建了一种基于残差神经网络(residual neural networks, ResNet)的肌肉疲劳预测模型。方法 通过模拟不同作业姿势和不同操作面下的钻孔试验,测量了肌肉最大自主收缩力、最大耐受时间、最大剩余肌力和主观疲劳评分。将测量后数据进行数据处理作为ResNet预测模型的输入,构建残差神经网络模型,以预测肌肉疲劳水平。结果 ResNet模型具有出色的预测精度,均方根误差(root mean square error,RMSE)为0.028,相较于传统的BP神经网络(RMSE=0.053)和MLP多层感知器神经网络(RMSE=0.059),其误差更小,拟合更好。结论 提出的残差神经网络肌肉疲劳预测模型能够有效准确地预测肌肉疲劳,为提高工作效率、减少工作相关肌肉骨骼疾患风险提供了有力支持。

    Abstract:

    Objective To investigate the relationship between upper limb joint angles and muscle fatigue in overhead tasks and develop a muscle fatigue prediction model based on residual neural networks (ResNet). Methods Through the simulation of drilling experiments performed with different working postures and on different operating surfaces, the maximum voluntary contraction, maximum endurance time, maximum residual muscle force, and subjective fatigue ratings were measured. The collected data were processed and used as input for the ResNet prediction model, which was constructed to predict muscle fatigue levels. Results The ResNet model exhibited outstanding predictive accuracy, with a root mean square error (RMSE) of 0.028. Compared with traditional backpropagation neural networks (RMSE=0.053) and multilayer perceptron neural networks (RMSE=0.059), they displayed smaller errors and better fitting. Conclusions The proposed residual neural network muscle fatigue prediction model can effectively and accurately predict muscle fatigue, providing strong support for improving work efficiency and reducing the risk of work-related musculoskeletal disorders.

    参考文献
    相似文献
    引证文献
引用本文

赵晓一,赵川,杨文鑫,刘思棋.面向手过头任务的残差神经网络肌肉疲劳预测模型[J].医用生物力学,2024,39(3):482-488

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-11-15
  • 最后修改日期:2024-01-02
  • 录用日期:
  • 在线发布日期: 2024-06-25
  • 出版日期:
文章二维码
关闭