Abstract:Objective Taking Chinese college students as the target group, this study detected the distribution of plantar pressure in different gait groups and analyzed the distribution characteristics of plantar pressure in in-toeing gait populations, to provide references for their orthopedic rehabilitation. Methods Ten subjects with typical in-toeing and normal and out-toeing gaits were selected to participate in the plantar pressure testing experiment. The maximum force, pressure, and contact time during natural standing and during one walking gait cycle were measured using a Zebris foot plantar pressure measurement system. Gait parameters, including step length, step width, step speed, step direction angle, gait center line, and force change curves, were collected, and a hazard analysis was conducted. Results During natural standing, the swaying interval area of the center of pressure was 939.0 252.4 mm2 for the in-toeing gait group and 1 120.2 101.6 mm2 for the out-toeing gait group, which was larger than that for the normal group (240.7 130.6 mm2). The in-toeing gait further weakens the human body’s ability to maintain stability. The dynamic and static plantar pressures in the three gait groups exhibited different distribution characteristics. During static standing, the pressure center of the in-toeing gait group shifted to the hindfoot, which accounted for 70% of the plantar pressure and was higher than that of the normal group. During dynamic walking, the absolute value of peak pressure in the tripodal area of the foot in the in-toeing gait group was higher than that in the other two groups. Conclusions The in-toeing gait group had poor static maintenance ability, and to a certain extent, the distribution of plantar pressure in the foot tripodal area and plantar zone pressure were different compared with that of the normal gait. This led to poor stability, easy muscle fatigue, and ankle and knee joint injuries in the in-toeing gait group under equal-intensity exercise conditions.