[关键词]
[摘要]
目的 对3D打印自就位钛网主体与两端定位翼的连接处进行优化,包括定位翼厚度、宽度以及连接处构型。分析优化改进前后仿真模型的结构性能,最终获得最优设计的新型自就位钛网。 方法 基于 SolidWorks 软件,构建自就位钛网仿真模型,优化、改进尺寸参数。 采用仿真软件 ANSYS Workbench 对连接处厚度和宽度进行多目标 优化设计。 并在连接处设计间断连接构型,获得优化后的自就位钛网。 结果 当对新型自就位钛网嵴顶外表面施加 40 N 载荷,连接处最大应变未超过钛网的断裂应变,且应力与变形皆在可接受范围内。 当对一侧定位翼的游离端施加 10 N 的 45°弯折力时,连接处最大应变超过了钛网的断裂应变,且裂纹集中于连接线处。 虚拟模型的仿真结果与力学性能验证试验的结果基本一致。 结论 通过优化自就位个性化钛网连接体的尺寸以及构型,实现手术中摆放、按压个性化钛网时,连接体不发生折断和较大位移。 术后对定位翼游离端简单弯折,即可实现连接体沿连接线整齐断裂分离,并且断面光滑平整。 本研究对自就位个性化钛网连接处尺寸及构型进行的优化取得了较为理想的临床效果。
[Key word]
[Abstract]
Objective To optimize the connection between the three-dimensional ( 3D) printed self-positioning titanium mesh main body and the positioning wings at both ends, including thickness, width and connection configuration of the positioning wings at the connection, and to analyze and optimize structural performance of the simulation model before and after the improvement, ultimately obtain the optimal design of a novel self-positioning titanium mesh. Methods A self-positioning titanium mesh simulation model was built in software SolidWorks to optimize and improve dimension parameters. Then, the multi-objective optimization design for thickness and width of the connection was conducted using the simulation software ANSYS Workbench. A discontinuous connection configuration was designed at the connection to obtain an optimized self-positioning titanium mesh. Results When the 40 N load was applied to outer surface of the novel self-positioning titanium mesh alveolar crest, the maximum strain at the connection did not exceed fracture strain of the titanium mesh, and the stress and deformation were within an acceptable range. When the 10 N bending force at 45° angle was applied to free end of the positioning wing on one side, the maximum strain at the connection exceeded the fracture strain of the titanium mesh, and the crack propagation path was concentrated at the connecting line. The experimental results of the virtual model were basically consistent with the results of mechanical performance verification test. Conclusions By optimizing the dimension and configuration of the individualized self-positioning titanium mesh connectome, the connectome does not break or shift significantly when the individualized titanium mesh is placed and pressed during surgery. After surgery, simply bending free end of the positioning wing can achieve a neat fracture and separation of the connector along the connecting line, with a smooth and flat cross-section. This study has achieved ideal clinical results by optimizing the dimension and configuration of the individualized selfpositioning titanium mesh connectome.
[中图分类号]
[基金项目]
国家自然科学基金项目(52175422,32101094),上海市卫生健康委员会卫生行业临床研究专项(202240194),上海交通大学医学院附属第九人民医院“ 交叉” 研究基金项目( JYJC202114)