Abstract:Objective To evaluate the biomechanical strength of individualized three-dimensional ( 3D) titanium alloy short femoral stem prosthesis. Methods A total of 12 adult cadaveric femur specimens were treated with artificial femoral head replacement with 4 kinds of short femoral stem prostheses: 3D printing group 1 (prosthesis A), 3D printing group 2 ( prosthesis B), BE 1 ( prosthesis C) and SMF ( prosthesis D). The deformation, maximum compressive load, maximum compressive displacement and compressive stiffness of the four prosthesis models were compared and analyzed through initial stability test and static compression test on the universal material mechanics testing machine. Results The initial stability test results showed that the deformation of 3D printing group 1 was slightly lower than that of 3D printing group 2, and the deformation of 3D printing group 1 was significantly lower than that of SMF group and BE group, but the difference was not statistically significant ( P > 0. 05). The maximum compressive load and compressive stiffness of 3D printing group 1 were higher than those of the other three groups, and the maximum compressive displacement was lower than that of the other three groups, but the difference was not statistically significant (P>0. 05). Conclusions The mechanical properties of individualized 3D printing titanium alloy short femoral stem prosthesis are similar to those of SMF and BE 1 prosthesis that are used frequently in clinic, and its mechanical stability is good.