基于表面肌电信号的手势识别与分析
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(11972243)


Recognition and Analysis of Hand Gesture Based on sEMG Signals
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 研究利用前臂及手部表面肌电( surface electromyography,sEMG)信号进行手势识别的方法,以及不同 手势下拇指、食指的关节角度,探讨 sEMG 信号控制外骨骼手的可行性。 方法 采集 20 名健康右利手受试者右侧 前臂及手部 6 块肌肉 sEMG 信号。 提取 sEMG 信号的时域特征值,对比人工神经网络( artificial neural network, ANN)、K-近邻(K-nearest neighbor, KNN)、决策树(decision tree, DT)、随机森林( random forest, RF)和支持向量机(support vector machine, SVM)等多种分类器对 6 种日常手势进行识别。 同时,采用 Vicon 摄像机跟踪系统捕捉右手拇指、食指运动轨迹,计算拇指、食指关节角度。 结果 利用前臂及手部 sEMG 信号可以实现 6 种手势的模式识别,其中 ANN 分类器的分类预测效果最好,测试集预测精度可达 97. 9% ,Kappa 系数可达 0. 975。 同时,计算得到不同手势下拇指、食指的关节角度,并进行不同手势下关节角度相关性分析。 结论 利用前臂及手部 sEMG 信号进 行手势识别,能够实现具有几乎完全一致的分类预测结果。 研究结果证明了 sEMG 信号手势识别应用于外骨骼手 控制的可行性。

    Abstract:

    Objective To study the method of hand gesture recognition using surface electromyography ( sEMG) signals from the forearm and hand, as well as joint angles of the thumb and index finger under different hand gestures, so as to explore the feasibility of controlling the exoskeleton hand with sEMG signals. Methods The sEMG signals of six muscles in the right upper limb of 20 healthy right-handed subjects were collected. The time domain feature values of sEMG signals were extracted. Classifiers such as artificial neural network (ANN), Knearest neighbor (KNN), decision tree ( DT), random forest ( RF) and support vector machine (SVM) were used for pattern recognition of six daily hand gestures. Meanwhile, trajectory of the thumb and index finger movements was captured by the Vicon camera tracking system. The thumb and index finger angles were calculated. Results Pattern recognition of six hand gestures could be achieved using sEMG signals of the forearm and hand, and the ANN classifier had the best classification prediction, with test set prediction accuracy of 97. 9% and Kappa coefficient of 0. 975. The thumb and index finger angles under six hand gestures were also calculated, and correlation analysis of joint angles under different hand gestures was conducted. Conclusions By using forearm and hand sEMG signals for hand gesture recognition, it is possible to achieve classification prediction with almost identical results. The results in this study demonstrate the feasibility of applying sEMG signal based-hand gesture recognition to exoskeleton hand control.

    参考文献
    相似文献
    引证文献
引用本文

张瑞轩,张绪树,郭媛,何栋栋,王瑞雪.基于表面肌电信号的手势识别与分析[J].医用生物力学,2022,37(5):819-825

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-03-08
  • 最后修改日期:2022-04-14
  • 录用日期:
  • 在线发布日期: 2022-10-25
  • 出版日期:
文章二维码
关闭