基于惯性传感网络的穿戴式步行膝关节力矩估计
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(51875347)


Knee Joint Moment Estimation During Walking via Wearable Inertial Sensor Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 通过惯性传感网络(inertial sensor network, ISN)估计多种步态下膝关节内翻力矩(knee adduction moment,KAM)和膝关节屈曲力矩(knee flexion moment,KFM)。方法 12名健康成年男性穿戴8个惯性传感器(位于躯干、骨盆、左右大腿、左右小腿、左右脚)在不同步态下(改变足偏角、躯干摇晃角、步宽和步速)行走。使用ISN,并从中提取生物力学特征作为循环神经网络(recurrent neural network, RNN)模型的输入,用于估计KAM和KFM。结果 整体KAM估计精度:相对均方根误差(relative root mean square error, rRMSE)为8.54%,r=0.84;整体KFM估计精度:rRMSE=6.40%,r=0.94。结论 该RNN模型可作为实验室外膝关节载荷估计的基础,潜在应用领域包括步态训练以及膝关节术后康复效果评估。

    Abstract:

    Objective To estimate knee adduction moment (KAM) and knee flexion moment (KFM) under different gait test conditions via an inertial sensor network (ISN). Methods Twelve healthy young male subjects wore eight inertial sensors (located in the trunk, pelvis, both thighs, both shanks, both feet) and walked under different test conditions (changing foot progression angle, trunk sway angle, step width and walking speed). An ISN was used to extract biomechanical features as the input of recurrent neural network (RNN), so as to estimate the KAM and KFM. Results The overall KAM estimation accuracy: relative root mean square error (rRMSE) was 8.54% and r=0.84. The overall KFM estimation accuracy was rRMSE=6.40% and r=0.94. Conclusions The model can be used as the basis for load estimation of knee joints out of the lab and its potential application includes gait training and rehabilitation assessment after knee surgery.

    参考文献
    相似文献
    引证文献
引用本文

王钿鑫,谈天,Peter B. SHULL.基于惯性传感网络的穿戴式步行膝关节力矩估计[J].医用生物力学,2022,37(1):73-78

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-01-22
  • 最后修改日期:2021-03-06
  • 录用日期:
  • 在线发布日期: 2022-02-25
  • 出版日期:
文章二维码
关闭