小鼠巨噬细胞对爆炸冲击损伤的力学生物学响应
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(11722220,11672246),陕西省自然科学基金项目(2020JQ-126)


Biomechanical Response of Macrophages/Microglia Cells to Blast Shock Injury in Mice
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 建立激波管对C57BL/6小鼠侧卧身位爆炸冲击实验模型,探究24 h内冲击波对C57BL/6小鼠心、肺、脑组织中巨噬细胞/小胶质细胞的力学损伤变化规律,明确组织巨噬细胞/小胶质细胞对爆炸冲击的力学生物学响应。方法 使用激波管对C57BL/6小鼠加载冲击损伤。首先在冲击后的不同时间点测量小鼠体质量变化,并在麻醉后解剖取心脏、肺以及全脑组织样本。对组织样本进行病理切片HE染色检测结构损伤;采用TUNEL染色方法标记并统计各组织中死亡细胞比例,使用anti-CD11b、anti-F4/80和anti-Iba1抗体对组织中的巨噬细胞或小胶质细胞进行荧光染色标记,分析冲击加载后机体巨噬细胞/小胶质细胞的力学生物学响应变化规律。结果 激波管对小鼠侧身位加载超压179 kPa冲击波,小鼠致死率为3.33%。与正常对照组相比,实验组小鼠在加载冲击后24 h内体质量显著下降;病理切片显示冲击后肺组织血管破裂,并伴随肺泡蛋白质沉积症、肺大疱等病症;荧光染色表明,肺组织在24 h内巨噬细胞大量被募集活化,清理死亡细胞比例在24 h回弹到正常水平;心脏对冲击具有较强耐受性,大血管附近出现巨噬细胞的大量聚集活化;脑部由于冲击姿态影响表现出小胶质细胞单侧聚集现象,主要为灰白质交界处出现长时间的炎症和较高死亡细胞比例。结论 建立了小鼠侧卧身位爆炸冲击模型,在24 h内,巨噬细胞(小胶质细胞)在受到冲击作用后可以迅速募集至损伤部位,介导强烈的免疫应激,并可能参与免疫反应,引发二次长期炎症损伤。研究结果为原发性冲击损伤的伤情评价提供量效关系和组织损伤差异性等实验依据。

    Abstract:

    Objective To establish a blast injury experimental model using a shock tube at lateral lying position of C57BL/6 mice, investigate biomechanical responses of macrophages/microglia cells in the heart, lung and brain tissues to mechanical damage by shock wave within 24 hours. Methods Shock tube was employed to generate a shock wave to C57BL/6 mice. Firstly, the weight changes of mice were measured at different time points after the shock. Then the cardiac, pulmonary and whole brain tissue samples were dissected after anesthesia. Pathological sections were stained with HE staining to detect structural damage; the TUNEL staining method was used to mark and count the proportion of dead cells in each tissue. Microglial cells were labeled with fluorescent antibody, while responses and changes of macrophages/microglia after shock loading were analyzed. Results The shock tube exerted 179 kPa overpressure shock wave upon sideway of the mouse, and lethal rate of the mouse was 3.33%. Compared with normal control group, the mice in experimental group had a significant weight loss within 24 hours after loading shock. Pathological sections showed rupture of lung tissues after shock, accompanied by alveolar protein deposition, pulmonary bulla and other diseases. Fluorescence staining showed that lung tissue was recruited and activated in a large amount within 24 hours. The proportion of dead cells cleared rebounded to normal level within 24 hours. The heart was highly tolerant to shock, and macrophages appeared near the large blood vessels. The brain showed unilateral aggregation of microglia due to the impact posture, mainly due to prolonged inflammation and a higher proportion of dead cells at the junction of gray and white matter. Conclusions A blast shock model at lateral lying position of the mouse was established. Within 24 hours, macrophages/microglia were recruited quickly to the injury site after being impacted, which mediated strong immune stress, and might participate in the immune response to trigger a second long-term inflammatory injury. The results of the study provide experimental basis for the evaluation of primary impact injury, such as dose-effect relationship and tissue damage difference.

    参考文献
    相似文献
    引证文献
引用本文

张弩,徐大森,朱细燕,周一丹,王思洁,靳明亮,戴亮亮,王素芳,赵辉,李玉龙,杨慧.小鼠巨噬细胞对爆炸冲击损伤的力学生物学响应[J].医用生物力学,2021,36(4):596-603

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-06-30
  • 最后修改日期:2020-08-14
  • 录用日期:
  • 在线发布日期: 2021-08-23
  • 出版日期:
文章二维码
关闭