Abstract:Objective To investigate and evaluate the biomechanical property of the skin in pig’s back in order to provide the essential theoretical basis for clinical and skin products. Methods Based on the monotonic tensile tests at various loading rates and the cyclic tension-tension tests at different load levels about the skin of pig’s back, the influence of loading rate and direction on the skin’s deformation and its creep deformation were discussed, the emphasis is addressed on the cyclical accumulation phenomenon of axial strain (i.e., ratcheting) of the skin and its dependence upon the applied stress level. Results The capacity of resisting tensile, creep and cyclic deformation of pig’s skin in the direction along the Langer’s line is more stronger than that perpendicular to the Langer’s line. The creep curve of pig’s skin is load-dependent and consisted of three phases about deceleration phase, stabilization phase and destruction stage. Pig’s skin exhibits apparent ratcheting under asymmetry stress cycle. Ratcheting deformation displays significant mean stress, stress amplitude and loading speed dependence.