Objective To analyze the interface biomechanical properties between femora and bioactive ceramics coatings prosthesis during the initial implant stage. The objective is to optimize the thickness of bioactive ceramics coatings on the metal surface. Methods Biomechanical models of press fit implanting the femora with non-homogeneous layer-like materials were used to quantify the press fit strength and circumferential stress of the interface when the femora were replaced with the different thickness of bioactive ceramics coatings prosthesis during the initial implant stage. Results The maximum press fit strength appears on the interface between femora and non-coatings layer Ti alloy prosthesis; the press fit strength decreased with the thickness increase of coatings layer. The circumferential stress displayed as the large tensile stress at the femora side of the interface; the compressive stress appeared at the coatings layer and Ti alloy prosthesis side of the interface. Conclusion The shearing strength of joint between the prosthesis and femora would be bigger with the thinner bioactive ceramics coatings.