文章编号:1004-7220(2024)05-0866-07

·骨与关节·

基于 µMRI 生物力学建模评估股骨近端微结构力学行为

霍晨晨, 杨海胜

(北京工业大学 生物医学工程系, 北京 100124)

摘要:目的 建立并验证一种基于显微磁共振成像(micro-magnetic resonance imaging, μMRI)和微结构分割无创评 估股骨近端微观力学行为的生物力学建模方法。方法 首先,对股骨样本进行 μMRI 扫描,基于分区域图像处理 的方法分割骨微结构,建立 μMRI 微有限元模型(μMRI 模型),模拟侧向跌倒姿态进行有限元分析,计算应力和应 变。其次,借助显微 CT(μCT),验证 μMRI 图像分割骨微结构的准确性;基于 μCT 构建有限元模型(μCT 模型),验 证 μMRI 模型计算结果的准确性。最后,通过模拟侧向跌倒的离体力学加载实验和应变片测量,验证 μMRI 模型计 算骨表面应变的准确性。结果 μMRI 与 μCT 模型计算得到的骨微结构参数 BV/TV 显著相关(r=0.89, P<0.05),μMRI 模型和 μCT 模型计算得到的最大和最小主应力/主应变百分位数高度相关(R²>0.9)。μMRI 模型 计算得到的应变与力学实验测量的应变高度相关(R²=0.82)。结论 基于 μMRI 分割骨微结构建立的股骨近端 微有限元模型可较为准确地表征股骨近端微观力学行为,研究结果为在体无创评估髋部股骨微结构退变和骨质疏 松性骨折风险提供了重要工具。

关键词:显微磁共振成像;微计算机断层扫描;有限元分析;股骨;骨微结构 中图分类号:R 318.01 文献标志码:A DOI: 10.16156/j.1004-7220.2024.05.011

Evaluation of Microstructure Mechanical Behavior of Proximal Femur Based on µMRI Biomechanical Modeling

HUO Chenchen, YANG Haisheng

(Department of Biomedical Engineering, Beijing University of Technology, Beijing 100124, China)

Abstract: Objective To establish and validate a biomechanical modeling method based on micro-magnetic resonance imaging (μ MRI) and microstructure segmentation for noninvasively assessing microstructure behavior of the proximal femur. **Methods** Firstly, μ MRI images were obtained from the femoral samples, and bone microstructures were segmented through regionized image processing to create the μ MRI finite element model (μ MRI model). Finite element analysis was performed utilizing a lateral fall posture simulation, and stress and strain were calculated. Secondly, the accuracy of μ MRI image segmentation of bone microstructure was verified using micro-computed tomography (μ CT), and the accuracy of μ MRI model calculation result was verified using a finite element model constructed based on μ CT (μ CT model). Finally, the accuracy of bone surface strain calculated by μ MRI model was verified through *in vitro* mechanical loading experiments simulating lateral falls and strain gauge measurements. **Results** The bone microstructure parameters BV/TV calculated by μ MRI model and μ CT model were significantly correlated (r = 0.89, P < 0.05). The maximum and minimum principal stress/ principal strain percentiles calculated by μ MRI model and μ CT model were highly correlated ($R^2 > 0.9$). The strain calculated by μ MRI-FEM was highly correlated with the strain measured by mechanical experiments ($R^2 = 0.82$).

µMRI Biomechanical Modeling

analysis; femur; bone microstructure

骨质疏松症是由于骨量减少和骨微结构破坏 导致骨强度下降和骨折风险增加的一种与老龄化 密切相关的疾病^[1]。其最严重的后果之一是引发 髋部股骨骨折,常被称为是"人生最后一次骨折", 严重影响老年人生活质量^[2]。早期精准评估股骨 骨折风险是防治骨质疏松性骨折的关键,早期骨流 失主要发生在骨小梁,其微结构退化导致的力学性 能下降是引发骨折的重要原因^[3]。研究表明,股骨 负载增加时,其内部的骨小梁比皮质骨更早地发生 屈服和损伤^[45]。因此,聚焦于骨微结构及其力学 行为有助于早期精准评估髋部股骨骨折风险。

在体获取髋部股骨微结构和微观力学特性极 具挑战性。高分辨率显微磁共振成像(micromagnetic resonance imaging, μMRI)是目前唯一可以 在体呈现股骨微结构的成像方法,分辨率高且无辐 射危害;结合有限元分析(finite element analysis, FEA)方法,可探究股骨近端的微观生物力学行为。 2014年,μMRI-FEA方法首次应用于股骨以鉴别脆 性骨折和非骨折患者^[6]。此外,该方法在评估老年 人群股骨骨强度时展现出很高的可重复性^[78]。 Rajapakse 等^[9]借助离体力学实验在宏观尺度上验 证了该方法计算股骨骨强度及表面应变的准确性。 Zhang 等^[10]研究认为,μMRI-FEA 微观层次的高风 险拉压应变可能是评估髋部骨折风险的更有效指 标。

尽管现有 μMRI-FEA 方法可以评估股骨力学 行为,但仍存在局限性。现有 μMRI-FEA 方法未直 接考虑骨微结构,而是根据像素灰度值赋予模型非 均匀材料属性^[6],但核磁图像灰度与材料属性并无 直接关联,且鲜有研究对其内部微结构的力学特性 进行验证,导致现有方法计算的股骨微结构力学特 性的准确性存疑。因此,本文提出了一种基于 μMRI 和微结构分割无创评估股骨近端微观力学行 为的生物力学建模方法,并借助微计算机断层扫描 成像(micro-computed tomography, μCT)及离体力学 实验进行验证,为在体无创评估髋部股骨微结构退 变和骨质疏松性骨折风险提供重要工具。

1 材料与方法

1.1 数据采集

通过积水潭医院获取离体股骨样本,并获得积 水潭医院伦理委员会的批准(#201808-01)。将采 集的离体股骨样本贮存于-80 ℃冰箱内,充分解冻 后,分别进行 µMRI 和 µCT 成像。采用 Philips Ingenia 3-T 超导 MRI 扫描仪(Philips 公司,荷兰)进 行扫描,扫描参数设置如下:视野区域(field of view, FOV)为120×120 mm²;像素矩阵为524×524;冠状 面的图像像素设置为(0.1875×0.1875) mm²;扫描 层厚为1.3 mm:冠状面扫描层数设置为40层:带宽 为 200 Hz/pixel; 相对信噪比为 1.00; 重复时间 (echo time, TE)为 8.7 ms;恢复时间(repetition time, TR)为18 ms;激励次数(number of excitation, NEX)为6;翻转角为25°;整个扫描时间花费约 25 min^[11]。采用 XtremeCT II µCT 扫描仪(SCANCO Medical AG 公司,瑞士)进行扫描,设置扫描参数, 其中各向同性体素为 60.7 μm,图像直径为 140 mm,冠状面扫描层数为1 680 层。

1.2 图像分割

获取股骨 DICOM 格式的 μMRI 图像,利用开源 软件 Image J (U.S. National Institutes of Health)进 行图像处理,去除软组织,仅保留股骨近端组织并 进行图像反转。在冠状面进行重采样操作,消除骨 小梁模糊并最小化体积效应,将冠状面的像素由 187.5 μm 细化为 93.75 μm,以更接近真实的骨小 梁尺寸^[12]。鉴于部分容积效应的影响,准确分割股 骨 μMRI 图像的骨微结构具有挑战性,尤其是在皮 质骨和松质骨交接区域。在相关研究中,通常选取 局部股骨 μMRI 图像进行分割,对局部骨小梁展开 研究^[13-14]。针对上述问题,采用分区域图像处理的 方法来分割 骨微结构。首先,在 Mimics 20.0 (Materialise 公司,比利时)中对皮质骨和松质骨进 行分割,采用半自动阈值分割处理重采样后的图 像,提取皮质骨和松质骨掩膜,利用形态学操作及 布尔运算细化掩膜细节,经图像处理获得松质骨原 始图像^[15][见图1(a)];其次,从松质骨中分割骨微 结构,在 MATLAB 中对松质骨原始图像编写代码进 行图像增强,去除背景,去除孤立噪点,二值化得到 骨小梁图像,进一步通过图像融合得到仅包含皮质 骨和骨小梁的骨微结构图像[见图1(b)],以整骨 骨微结构为对象展开研究。

将 µCT 图像的骨微结构作为金标准,经滤波降

噪和阈值分割获得骨微结构。分别基于 μMRI 和 μCT 图像所得骨微结构建立三维模型,以μCT 模型 为基准进行三维刚性配准,一方面,分别计算整骨 模型皮质骨、骨小梁、骨微结构的 BV/TV;另一方 面,在股骨头(VOI 1)、股骨颈(VOI 2)、大转子 (VOI 3)和小转子(VOI 4)位置处选取4个10 mm× 10 mm×10 mm 区域作为感兴趣区域(volume of interest, VOI)^[7],计算骨微结构参数,如骨体积分 数 BV/TV、骨小梁间隙 Tb. Sp、骨小梁厚度 Tb. Th、 骨小梁连接密度 Conn. D 等,用以验证 μMRI 图像 分割骨微结构的准确性[见图 1(b)]。

1.3 三维建模与有限元分析

首先,与先前的研究方法一致^[6],建立基于骨体积分数(bone volume fraction, BVF)的有限元模型(µMRI(BVF)模型)。在 Mimics 20.0 中选取分割前的µMRI图像进行三维重建并生成基于体素的六面体单元(约384×10⁴个六面体单元),根据 BVF赋予其非均匀材料属性,设定骨组织最大弹性模量为15 GPa,将µMRI股骨近端影像灰度值线性缩放为0%~100%范围,对应弹性模量 0~15 GPa,泊松比为0.3。

其次,基于 μMRI 图像分割结果,建立基于骨微 结构(bone microstructure, BM)的 μMRI 有限元模 型(μMRI(BM)模型)。选取 μMRI 的骨微结构图 像进行三维重建,并生成基于体素的六面体单元 (约 219×10⁴ 个六面体单元),并赋予模型以均质材 料属性,设置弹性模量为7.3 GPa,泊松比为0.3^[4]。

最后,基于 μCT 图像分割结果,建立基于骨微 结构的 μCT 有限元模型(μCT-FEM)。选取 μCT 的 骨微结构图像进行三维重建,并生成基于体素的六 面体单元(约635×10⁴个六面体单元),并赋予模型 以均质材料属性,设置弹性模量为7.3 GPa, 泊松比 为0.3^[4]。

模拟人体侧向跌倒姿态,在 ABAQUS 2020 (Simulia 公司,美国)中进行有限元分析。为了准确 对比有限元模型与离体力学实验的应变,以股骨头 与股骨干中心作为参考,将 μMRI(BVF)模型、 μMRI(BM)模型和 μCT-FEM 进行三维配准,分别 在有限元模型应变片相应位置建立单元集,以准确 提取应变。边界条件设置与先前研究^[16]保持一致: 股骨轴相对于地面倾斜 10°,股骨颈向内旋转 15°, 在股骨头施加垂直向下的载荷(131 N),股骨远端 固定,大转子外侧大部分节点完全固定,少部分节 点在横向平面自由移动(见图 2)。

利用服务器对大尺度模型进行计算, µMRI-FEM 采用 20 线程、128 GB RAM 和 500 GB 存储的服务器 运行 5~6 h 完成计算, µCT-FEM 采用 128 线程、512 GB RAM 和 4 T 存储的服务器运行 48 h 完成计算。提取每个模型所有单元的最大和最小主应力、主

HUO Chenchen, et al. Evaluation of Microstructure Mechanical Behavior of Proximal Femur Based on

µMRI Biomechanical Modeling

Fig. 2 Boundary conditions (a) Epiphysis axis of the femoral shaft is 10°, (b) Femur internal rotation is 15°

应变,按绝对值由大到小进行排序,分别取 5%、10%、 25%、50%、75%、90%和 95%百分位数结果进行定量 比较。同时,提取每个模型对应应变片位置处的应 变,与离体力学实验测量应变进行对比。

1.4 离体力学实验验证

将离体股骨样本贮存于-80 ℃冰箱内,在实验 开始前取出,使用浸泡过磷酸缓冲生理盐水 (phosphate buffered saline, PBS)的纱布包裹股骨置 于室温下解冻 24 h^[17],并去除表面软组织,与股骨 3D 打印模具配对浇筑骨水泥(polymethyl methacrylate, PMMA),将股骨调整至侧向跌倒姿 态,确保与模拟分析边界条件保持一致^[18]。参考 Schileo等^[17]研究方法,在4个解剖部位(股骨头、 股骨颈、干骺端、股骨干)的4个解剖方位(股骨内 侧、外侧、前部、后部)选择12个位置粘贴应变计 (见图3)。利用自主设计研发的力学测试仪对样本 进行力学加载实验,加载过程中实时收集压力和位 移数据。在正式加载前进行5次预加载实验,以消 除多余的松弛效应。随后进行正式实验,施加 0.5 mm 位移,以0.1 mm /min 速率进行稳定加载,

(a) 应变片粘贴位置 图 3 离体力学实验

(b) 实验加载

同时记录压力传感器稳定时的示数(131 N)以及加载过程中的应变数据。重复上述实验,在两次重复实验之间允许股骨样本恢复 5 min。

1.5 统计学分析

对基于 μCT 和 μMRI 分割结果所得微结构参数进行 Pearson 相关性分析,对不同有限元模型计算的应力、应变结果进行线性回归分析,对离体力学实验与有限元模型的应变结果进行线性回归分析,以上分析均在 SPSS 22.0(IBM 公司,美国)中进行,以确保统计结果的准确性和可靠性,设定 P<0.05 作为判断差异显著性的标准。

2 结果

基于 μCT 与 μMRI 股骨近端微结构的分割 结果比较

对4个感兴趣区域的微结构参数进行 Pearson 相关性分析,结果显示, µMRI 与 µCT 感兴趣区域处 的 Tb. Sp、Tb. N 和 Conn. D 在统计学上存在显著相 关性(P<0.05),但 µMRI 所得骨小梁的 Tb. Sp 和 Conn. D 分别降低了 94% 和 134%, µMRI 所得骨小 梁出现了增宽增厚现象。此外, µMRI 和 µCT 所计 算的整骨骨微结构、皮质骨、松质骨和感兴趣区域的 BV/TV 显著相关(r=0.89, P=0.006), 两种成像方式下 所得骨微结构的 BV/TV 具有较好的一致性(见表1)。

表 1 μMRI 和 μCT 股骨近端微结构参数对比

 Tab. 1
 Comparison of microstructure parameters of proximal femur obtained from µMRI and µCT

微结构参数	μMRI	μCT
Tb. Th∕ mm	0.30±0.02	0.24±0.03
Tb. Sp/mm	0.88±0.26	1.71±0.77*
Tb. N/mm ⁻¹	0.45±0.22	0. 34±0. 20 *
Conn. D/mm ⁻³	0.55 ± 0.08	1. 29±1. 83 *
(BV/TV)/%	16. 21±6. 72	13. 13±8. 72 *

注:Tb. Th 为骨小梁厚度,Tb. Sp 为骨小梁分离度,Tb. N 为骨小梁数目,Conn. D 为骨小梁连接密度,BV/TV 为骨体积分数;*P<0.05。

2.2 基于不同有限元模型评估股骨近端微观力学 行为比较

模拟侧向跌倒姿态下,μMRI(BVF)模型、μMRI (BM)模型和μCT-FEM所得应力、应变云图分布与 先前研究结果一致,股骨颈是易发生骨折的高危区 域,股骨颈上侧受拉,股骨颈下侧受压^[10]。与 μMRI(BVF)模型相比,μMRI(BM)模型所得云图可

Fig. 3 In vitro mechanical experiment (a) Pasting position of strain gauge, (b) Experimental loading

Fig. 4 Stress and strain coutours of different finite element models (a) Stress distributions, (b) Strain distributions

分别提取 3 个模型所有单元的最大和最小主 应力、应变百分位数进行定量比较,结果发现,μMRI (BM)模型与μCT模型、μMRI(BVF)模型得到的应 力、应变百分位数均具有强相关性(*R*² = 0.98 ~ 0.99),但μMRI(BM)模型所得应力、应变百分位数 更接近μCT模型所得应力、应变百分位数(斜率 0.75~0.76)。本文认为,基于μMRI 骨微结构构建 的有限元模型与基于μCT 骨微结构建立的有限元 模型所得应力、应变力学行为高度一致(见图 5)。

2.3 离体力学实验与有限元模型应变比较

两次离体力学实验测量的应变结果如表 2 所 示,最终的应变取两次实验的平均值。

分别提取 μMRI(BVF)模型、μMRI(BM)模型 和 μCT 模型对应应变片位置处的最大和最小主应 变,与离体力学实验应变片测量结果进行对比,结 果表明,3 种有限元模型计算的应变与实验测量的

Fig. 5 Comparison of stress and strain percentile results between finite element models (a) Comparison of stress percentile, (b) Comparison of strain percentile

表 2 离体力学实验应变结果

Tab. 2 Strain results of mechanical experiments in vitro

应变计	第1次力学实验		第2次力学实验	
编号	$\mu \varepsilon_{\max}$	$\mu arepsilon_{ m min}$	$\mu \varepsilon_{\max}$	$\mu arepsilon_{ m min}$
1	19	-34	20	-41
2	18	-164	23	-208
3	60	-122	76	-156
4	25	-152	35	-189
5	55	-89	73	-105
6	46	-67	58	-106
7	52	-21	70	-27
8	33	-30	41	-45
9	12	-72	7	-101
10	64	-31	74	-45
11	76	-24	88	-27
12	39	-15	50	-15

注: $\mu \varepsilon_{max}$ 、 $\mu \varepsilon min$ 分别为最大、最小微主应变。

应变均具有强相关性($R^2 = 0.81 \sim 0.86$)。其中, μ CT 模型计算的应变与离体力学实验测量的应变 相关性最显著($R^2 = 0.86$)。与 μ MRI(BVF)模型相 比, μ MRI(BM)模型计算的应变与离体力学实验测 量的应变更为吻合($R^2 = 0.82$,斜率 1.08),见图 6。

图 6 不同有限元模型计算的应变与离体实验测量的应变结果对比

Fig. 6 Comparison between strain calculated by different finite element models and strain measured by in vitro

experiments (a) µMRI(BVF) model, (b)µMRI(BM) model, (c) µCT model

清晰呈现内部微结构的受力情况(见图4)。

HUO Chenchen, et al. Evaluation of Microstructure Mechanical Behavior of Proximal Femur Based on

3 讨论

骨微结构对于骨质疏松症的临床诊断及病理 分析具有重要的临床应用价值[19-20]。股骨的多尺 度有限元模型研究表明,不同尺度下的骨形态和力 学性能均会发生变化[21],相同力学刺激下在宏-微-纳观水平力学参数可能表现出不同变化趋 势^[22]。µMRI 是目前唯一可以在体呈现股骨微结 构的成像方法,可以深入研究骨微结构,通过建立 包含准确骨骼信息和材料属性的三维 μMRI-FEM, 为评估骨折风险和预防骨质疏松症等疾病提供新 的视角。本文以骨微结构为切入点,对股骨 uMRI 图像采用分区域图像处理的方法分割骨结构并建 立有限元模型,计算应力和应变,借助 uCT 和离体 力学实验验证该模型计算的应力和应变的准确性。 结果显示,股骨 µMRI 图像分割的骨微结构 BV/TV 与 µCT 图像呈现出的骨微结构 BV/TV 具有较好的 一致性, μ MRI(BM)模型与 μ CT模型计算的应力、 应变高度相关。与 µMRI(BVF)模型相比,µMRI (BM)模型可以清晰呈现内部骨微结构,与离体力 学实验测量的应变更为吻合。

μCT 被称为评价骨形态和骨微结构的"金标 准"^[23],但不适用于股骨在体成像。由于分辨率的 局限性,每一张μMRI 图像相当于 22 张μCT 图像 堆叠而成,导致μMRI 图像分割所得骨小梁出现了 增厚增宽,但也在一定程度上弥补了冠状面骨小梁 信息的缺失,两种图像计算所得 BV/TV 具有较好 的一致性。

基于 Nawathe 等^[4]的研究,本文赋予骨微结构 均质材料属性,将μMRI(BM)模型弹性模量设定为 7.3 GPa,探究股骨近端μMRI(BM)模型的准确性。 由于赋予模型材料的方法不同,μMRI(BVF)模型被 线性赋予弹性模量 0~15 GPa,其中皮质骨的弹性 模量接近 15 GPa;而μMRI(BM)模型皮质骨的弹性 模量为 7.3 GPa,与μMRI(BM)模型相比,μMRI (BVF)模型中皮质骨更为坚硬,从而导致μMRI (BVF)模型应变片对应位置的应变较小。

总体来说,基于 μMRI 图像分割所得骨微结构 与 μCT 呈现的骨微结构具有较好的一致性。与 μMRI(BVF)模型相比,μMRI(BM)模型可以更好呈 现内部微结构,并较为准确地评估股骨近端微观力 学行为,为进一步在体研究股骨近端骨微结构的退 变奠定基础,对于深入探究股骨的力学性能和预测 骨折风险具有重要意义。

本研究的局限性如下:①由于人体离体股骨样本较为珍贵,仅采用了1例离体股骨样本进行研究,但已借助 µCT 图像探究了多模态图像下骨微结构的异同,对µMRI分割骨微结构的准确性进行了验证;并借助离体力学实验验证了µMRI(BM)模型的准确性,后续可以考虑补充样本,进一步研究微结构的退变。②基于µMRI 图像分割所得的骨微结构建立三维有限元模型,由于分辨率的限制,部分单个骨小梁信息被忽略,并导致了骨小梁的增厚增宽。在后续的研究中,期望通过修改扫描参数或更新扫描设备,得到更接近真实骨小梁尺寸分辨率的µMRI 图像,以便更准确地评估股骨骨折风险。

利益冲突声明:无。

作者贡献声明:霍晨晨负责研究设计、数据统 计分析和论文撰写;杨海胜负责论文写作指导及 修改。

参考文献:

- [1] CONSENSUS A. Consensus development conference: diagnosis prophylaxis, and treatment of osteoporosis [J].Am J Med, 1993, 94(6): 646-650.
- [2] 常文举,丁海. 股骨近端解剖与生物力学研究进展[J]. 医用生物力学,2016,31(2):188-192.
 CHANG WJ, DING H. Advances in anatomy and biomechanics of the proximal femur [J]. J Med Biomech, 31(2):188-192.
- [3] 刘奋斗,丁海. 骨生物力学特性在骨质疏松症中的改变
 [J]. 医用生物力学, 2017, 32(4): 388-392.
 LIU FD, DING H. The changes of bone biomechanical properties in osteoporosis [J]. J Med Biomech, 2017, 32 (4): 388-392.
- [4] NAWATHE S, NGUYEN BP, BARZANIAN N, et al. Cortical and trabecular load sharing in the human femoral neck [J]. J Biomech, 2015, 48(5): 816-822.
- [5] NAWATHE S, AKHLAGHPOUR H, BOUXSEIN ML, et al. Microstructural failure mechanisms in the human proximal femur for sideways fall loading [J]. J Bone Miner Res, 2014, 29(2): 507-515.
- [6] CHANG G, HONIG S, BROWN R, et al. Finite element analysis applied to 3-T MR imaging of proximal femur

microarchitecture: Lower bone strength in patients with fragility fractures compared with control subjects [J]. Radiology, 2014, 272(2): 464-474.

- [7] CHANG G, HOTCA-CHO A, RUSINEK H, et al. Measurement reproducibility of magnetic resonance imaging-based finite element analysis of proximal femur microarchitecture for *in vivo* assessment of bone strength
 [J]. MAGMA, 2015, 28(4): 407-412.
- [8] CHANG G, RAJAPAKSE CS, REGATTE RR, et al. 3 Tesla MRI detects deterioration in proximal femur microarchitecture and strength in long-term glucocorticoid users compared with controls [J]. J Magn Reson Imaging, 2015, 42(6): 1489-1496.
- [9] RAJAPAKSE CS, FARID AR, KARGILIS DC, et al. MRIbased assessment of proximal femur strength compared to mechanical testing [J]. Bone, 2020(133): 115227.
- [10] ZHANG L, WANG L, FU R, et al. In vivo assessment of age- and loading configuration-related changes in multiscale mechanical behavior of the human proximal femur using MRI-based finite element analysis [J]. J Magn Reson Imaging, 2021, 53(3): 905-912.
- [11] 张凌云,王玲,刘有军,等.基于显微磁共振成像和有限元 分析的股骨近端微观力学行为研究[J].北京生物医学工程, 2020,39(2):111-116.
- [12] ALBERICH-BAYARRI A, MARTI-BONMATI L, SANZ-REQUENA R, et al. In vivo trabecular bone morphologic and mechanical relationship using high-resolution 3-T MRI [J]. AJR Am J Roentgenol, 2008, 191(3); 721-726.
- [13] GUENOUN D, PITHIOUX M, SOUPLET JC, et al. Assessment of proximal femur microarchitecture using ultra-high field MRI at 7 Tesla [J]. Diagn Interv Imaging, 2020, 101(1): 45-53.
- [14] KAZAKIA GJ, CARBALLIDO-GAMIO J, LAI A, et al. Trabecular bone microstructure is impaired in the proximal femur of human immunodeficiency virus-infected men with normal bone mineral density [J]. Quant Imaging Med

Surg, 2018, 8(1): 5-13.

- [15] LUISIER B, DALL'ARA E, PAHR D H. Orthotropic HRpQCT-based FE models improve strength predictions for stance but not for side-way fall loading compared to isotropic QCT-based FE models of human femurs [J]. J Mech Behav Biomed Mater, 2014(32): 287-299.
- [16] ALBERICH-BAYARRI A, MARTI-BONMATI L, SANZ-REQUENA R, et al. In vivo trabecular bone morphologic and mechanical relationship using high-resolution 3-T MRI
 [J]. AJR Am J Roentgenol, 2008, 191(3): 721-726.
- [17] SCHILEO E, TADDEI F, MALANDRINO A, et al. Subjectspecific finite element models can accurately predict strain levels in long bones [J]. J Biomech, 2007, 40(13): 2982-2989.
- [18] COURTNEY AC, WACHTEL EF, MYERS ER, et al.
 Effects of loading rate on strength of the proximal femur
 [J]. Calcif Tissue Int, 1994, 55(1): 53-58.
- [19] 岑海鹏,宫赫,李晨晨,等.多尺度分析骨质疏松大鼠骨微结构变化[J].医用生物力学,2023,38(3):514-520.
 CHEN HP, GONG H, LI CC, *et al.* Multiscale analysis on changes in bone microstructure of osteoporotic rats [J]. J Med Biomech, 2023, 38(3):514-520.
- [20] 储林洋,叶腾,许明明,等. 髋关节发育不良进展过程中软 骨下骨显微结构和生物力学性能变化及其与关节软骨退变 之间的关系[J]. 医用生物力学, 2021, 36(S1): 39.
- [21] CEN H, YAO Y, LIU H, et al. Multiscale mechanical responses of young and elderly human femurs: A finite element investigation [J]. Bone, 2021(153): 116125.
- [22] 范若寻,王伟军,贾政斌.不同跑步速度对大鼠股骨皮质骨组 织失效应变的影响[J].医用生物力学,2024,39(1):62-68.
 FAN RX, WANG WJ, JIA ZB. Effects of different running speeds on tissue-level failure strain in rat femoral cortical bone [J]. J Med Biomech, 2024, 39(1):62-68.
- [23] 马剑雄,赵杰,何伟伟,等.高分辨率外周定量计算机断层 扫描评估骨小梁微结构和骨强度的研究进展[J].生物医学 工程学杂志,2018,35(3):468-474.