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FRET imaging of molecular hierarchy at subcellular levels in
mechanotransduction

WANG Ying-xiao ( Department of Bioengineering & Institute of Engineering in Medicine, University of
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Abstract. Cells in the body are exposed to physiological and pathophysiological stimuli that encompass both
chemical and mechanical factors. It is important to understand how these factors modulate functions at cellular
and organ levels. Compared to the large amount of information on cellular or organ responses to chemical fac-
tors, there is a paucity of knowledge on the effects of mechanical factors. Recent advances of fluorescence pro-
teins and microscopy make it a very useful tool for elucidating the mechanotransduction processes; the state-of-
the-art technologies for live-cell imaging of signaling is particularly valuable for investigating the spatial and tempo-
ral aspects of molecular mechanisms in mechanobiology. This review will cover the basic knowledge of fluores-
cence proteins and their application for biological research. In particular, the development and characterization of
biosensors based on fluorescent resonance energy transfer (FRET) will be discussed. Genetically encoded
FRET biosensors, which allows the imaging and quantification of tempo-spatial activation of molecules, will be in-
troduced to demonstrate how the initiation and transmission of biochemical signals in response to local mechanical
stimulation can be visualized in live cells. Specific emphasis will be on the elucidation of molecule hierarchy of sig-
naling transduction in live cells upon the mechanical stimulation.

Key words: Fluorescent resonance energy transfer ( FRET); Fluorescent protein; Mechanical stimulation;
Signaling transduction; Biosensor; Mechanobiology
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Atherosclerosis is the leading cause of death in the
United States and most other developed countries''’. In
fact, sudden death caused by atherosclerosis occurs to a-
bout half million people each year in the United States™’
with a related economic cost estimated to be more than 150
billion in 20077,
vascular curvature and branch sites where the vessel walls

Atherosclerosis occurs preferentially at

are exposed to disturbed flow, but not at the straight parts
of vessels where laminar flow dominates™’. Vascular endo-
thelial cells ( ECs) which form the interface between the
circulating blood and the arterial wall are constantly ex-
posed to these hemodynamic forces and the ensuing shear
stress, the tangential component of hemodynamic forces
acting on ECs. Ample evidence has indicated that the dif-
ferent flows and the ensuing shear stresses regulate the
cell-cell junctions of vascular endothelial cells (ECs) and
the subsequent endothelium permeability, the major cause
of atherosclerosis. Despite the tremendous advancements
of our understanding on the role of mechanical force in
pathophysiological processes during past decades, it re-
mains unclear about the detailed molecular mechanism by
which cells sense the spatiotemporal characteristics of
these mechanical stimuli and coordinate the molecular hier-
archy at subcellular levels to determine patho-physiological
consequences. Fluorescence resonance energy transfer
(FRET) technology and genetically encoded biosensors
have provided powerful tools for visualizing active molecular
events with high spatiotemporal resolutions in live cells. In
this paper, we will introduce the basic concept of mechano-
transduction, signaling transductions at subcellular regions,
FRET technology and biosensor designs based on FRET,
as well as their application for the visualization of mechano-
transduction. We will specifically discuss the application of
biosensors for the visualization of Src signaling pathways
and their roles in regulating the mechanotransduction. Src
is activated by mechanical force and plays central roles in a
variety of cellular processes at subcellular regions™*’.
Hence, the visualization of Src during mechanotransduction
should advance our understanding on how cells sense me-
chanical cues and convert into biochemical signals. We will
also discuss multiple molecular signals simultaneously visu-
alized in the same cells utilizing two independent FRET bio-
sensors with distinct colors to elucidate the signaling hierar-
chy in regulating cellular functions. This simultaneous visu-
alization of multiple signaling cascades at subcellular levels

is particularly important as it becomes clear that molecular
interactions and their biological functions in live cells are
largely dependent on their subcellular location/environ-
ment, possibly due to the different sets of mediator mole-

cules at different subcellular locations'”*!

. As such, the in-
tegration of multi-color FRET biosensors for the direct visu-
alization of the molecular interaction and regulation at sub-
cellular levels will bring revolutionary advancement to the
fundamental understanding of intracellular signaling net-
works. The results will shed new lights on the molecular
mechanism by which different flows regulate cardiovascular

diseases, such as atherosclerosis.

1  Mechanotransduction, atherosclerosis,
and shear stress

Atherosclerosis is a cardiovascular disease character-
ized by the patchy deposit of fatty materials in the arterial
walls and the subsequently reduced/blocked blood flow™'.
It occurs preferentially at vascular curvature and branch
sites where the vessel walls are exposed to disturbed flow,
but not at the straight parts of vessels where laminar flow
dominates!*’. Vascular endothelial cells ( ECs), which
form a monolayer of endothelium lining along and protecting
the vessel wall from the circulating blood™’ , are continu-
ously exposed to shear stress resulted from these different
flows. It has been shown that ECs subjected to disturbed
flows, but not to laminar flows, tend to have a high and
sustained permeability which facilitates the formation of ath-

10-11]

erosclerosis! . Recent evidence also indicates that the

effect of disturbed flows on ECs is pro-inflammatory where-

9,12-14]

as that of laminar flows is anti-inflammatory' . For ex-

ample, laminar flows can inhibit the inflammatory signaling

cascades induced by TNFa!""',

In contrast, disturbed
flows induced the expression of pro-inflammatory BMP-4
and cytokines and adhesion receptors such as intercellular
adhesion molecule-1 (ICAM-1) and vascular cell adhesion
molecule ( VCAM-1) %7,

how cells sense the distinct spatiotemporal characteristics

It remains unclear, however,

of these mechanical stimuli and determine the correspond-
ing pathophysiological consequences.

Following the atherosclerosis, the injury of endothelium
and loss of ECs after bypass surgery or balloon angioplasty
is the main cause of restenosis. The EC migration at the
wounding edge followed by EC proliferation, serves as the
critical step to restore the endothelium integrity’’'. Cell
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junctions in EC monolayers can be disrupted by shear
stress and recover if continuously exposed to laminar flows
for long-term as the cells adapt to the new environ-

ment!'*""

. However, it is expected that this transient dis-
ruption of cell junctions under laminar flows will last longer
during the wound healing process than in normal conditions
because it takes time for cells to repair the wound and re-
store a stable monolayer and adapt to the new environ-
ment. The junction disruption would keep the ECs disen-
gaged from each other and free to move. This laminar-
flow-directed protrusion and migration of ECs at the up-
stream side of wounded area can be maintained before the
wound closure, thus facilitating the EC migration towards
the wounded area. At the downstream side, the laminar-
flow-induced protrusion along the flow direction negates the
shear-induced motility enhancement. Although a wound per
se can induce a migration of cells at both wounding edges
to close the wound, results have revealed that laminar
flows promote cells at the upstream side to migrate into the
wounded area faster whereas the rate of cell migration
downstream of flow is comparable to that without flow'™’.
This asymmetric effect of laminar flows results in an in-
creased net speed of wound healing comparing to a wound
healing process without flow. In fact, both in vitro and
in vivo experiments indicate that laminar flows enhance EC

B3] | aminar

migration and consequently wound healing
flows have been shown to enhance the wound healing by
modulating cell-cell and cell-ECM adhesions, in particular,
VE-cadherin-mediated AJ™**"" and B1 integrins™’.

brane fluidity, cytoskeleton, and tyrosine kinases also ap-

Mem-

pear to be important for the laminar-flow-induced EC wound

[22,2930]

healing Interestingly, disturbed flows induce sus-

tained disruption of AJ!"",

However, the EC migration
speed toward the wounded area under disturbed flows is
comparable to that without flow'™ . It was revealed that
ECs under disturbed flows have strong staining of focal ad-
hesion proteins due to the unstable mechanical environ-
ment ™ | which may impair the cell detachment from the
substrate necessary for EC migration and hence wound clo-
sure”'’. At the current stage, there is a lack of study on
how ECs coordinate the multiple signaling events in space
and time under different flows to regulate motility, migration
and wound healing.

It has been well documented that shear stress can ac-

tivate a variety of signaling cascades and gene expressions

to regulate EC functions and pathophysiological processes,
including atherosclerosis™**'. For example, a wild range
of signaling and structural molecules, including plasma
membrane, membrane proteins/receptors ( e. g. inte-
grins”*’ GPCR"™', Cadherin'""', PECAM-17"*",
VCAM-1“*J " ICAM-1""" | and ion channels™! | actin fila-

[4344]

ments™' |  microtubules' and intermediate fila-

’ ’

ments'“*"! were identified to play important roles in trans-
mitting shear stress into biochemical signaling cascades,
i. e. mechanotransduction. Evidence also indicates that
both the temporal and spatial gradient of shear stress can

affect the cellular functions .

In fact, it was realized
that the subcellular characteristics of shear stress are het-
erogeneous in a single cell and impact significantly on cellu-

lar responses”® 7]

Calcium flux in response to shear
stress showed significant subcellular directionality ***"'. The
lateral diffusion coefficient of lipids in the plasma membrane
also increased at regions upstream of nucleus while de-
creased at the downstream regions upon shear stress ap-

plication™"”.

2 The plasma membrane and src kinase in

mechanotransduction

The plasma membrane is not uniform in structure'®"’
and has different microdomains, e. g. lipid rafts, which are
rich in cholesterol, sphingomyelin, and saturated fatty
acids'®’. These microdomain structures and their interac-
tion with cytoskeleton are involved in the regulation of intra-

cellular signaling™®”’

. Indeed, Src family kinase members,
including Fyn and Lyn, are anchored to lipid rafts to be-
come activated following N-terminal palmitoylation and myr-

[64]

istoylation'™ , whereas H-Ras depends on the non-rafts

anchoring at the plasma membrane to be functional™*’,
Evidence also indicates that the plasma membrane and its
microdomains are involved in mechanotransduction. For
example, different subtypes of G-proteins are partitioned
into membrane microdomains to regulate the mechanical-
activated signaling molecules, e. g. nitric oxide produc-
tion'®’ and MAPK activity'*" .
ma membrane fluidity also altered the shear stress-induced

The modulation of the plas-

601

MAPK signaling pathway'®" | further underscoring the im-
portance of the plasma membrane in mechanotransduc-
tion.

Src kinase is a non-receptor tyrosine kinase critical for

a variety of cellular processes'”’. Before stimulation, Src
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localizes at microtubules-associated perinuclear regions in

%74 Recent evidence indicates that

various types of cells'
Rho small GTPases and the associated actin network can
facilitate the transportation of Src from perinuclear area to

actin-associated cell periphery ™"’

, possibly through the
Src SH3 domain, but not the catalytic domain™"’. The in-
hibition of RhoA or actin stress fibers but not microtubules
resulted in the blockage of Src translocation/activation in

response to various stimuli'”””’

. The compartmental struc-
tures at the plasma membrane are also involved in the lo-
calization and regulation of intracellular signaling mole-

cules, including Src kinase'®®’.

Src family kinases
(SFKs) can be transported to distinct compartments of
plasma membrane through different types of endo-
somes'®’. SFK members such as Lyn and Fyn can reside
in lipid rafts of the plasma membrane™’ , via their N-termi-
nal myristoylation and palmitoylation sites'®’. Src kinase it-
self has only myristoylation motif and it is not clear whether
Src kinase localizes within the lipid rafts at the plasma

membrane ™ *!,

In mouse fibroblasts, Src was shown to
be excluded from the detergent-resistant membrane
(DRM) fractions in one study while another publication
suggested that Src resides in DRM fraction'*). Different
groups also reported different Src localizations in PC12
cells'™®! This inconsistency is likely attributed to the con-
troversial effects of non-ionic detergents and the detergent
extraction method used in these reports for isolating DRMs,
which, however, may not exactly correspond to the lipid
rafts in living cells and may include membranes that do not
contain rafts before detergent extraction'*”’. The develop-
ment of advanced methods is needed to visualize the Src
translocation and activation at the plasma membrane in live
cells.

In the inactive state, the SH3 and SH2 domains of Src
kinase are coupled together by intramolecular interactions,
and the catalytic kinase domain of Src is masked by its in-
teraction with the C-terminal tail, thus preventing its action
on substrate molecules. Shear stress can induce the en-
gagement of integrins'®! | which may subsequently activate
Src”". In fact, shear stress has been shown to activate
Src in different cell types"*'. Several putative mechanisms
have been proposed for the Src activation induced by shear
stress and integrin-engagement: (1) The shear-modulated
cytoplasmic tail of integrin B3 may directly recruit Src kinase
through its SH3 domain. This action disrupts the intramo-

lecular interactions between different domains of Src and
activate Src™'; (@ Shear-activated integrins cause the
myristoylation-mediated translocation of Src to focal adhe-
FAK Y397, in a high-affinity ;YAEI context,

competes with the Src C-terminal Y527 for its intramolecu-

sion sites'”’.
lar interaction and thus activate Src””**’; 3 Recent evi-
dence has shown that integrin-engagement leads to the as-
sociation of integrin avp3 with RPTP«, a well-characterized

activator of Src family kinases™"’.

It is possible that shear-
regulated integrins recruit RPTP«x to dephosphorylate the
Y527 on the C-terminal tail of Src and release it from the ki-
nase domain, thus activating Src™®’. It becomes clear that
the Src activation and its biological functions are tightly con-
trolled by the subcellular locations. For example, Src in-
duces the p190GAP activation and inhibits Rho GTPase at

the focal adhesion sites'”?, whereas it activates Rho GT-

Pase at podosomes'!. Hence, the visualization of Src ac-
tivation with high spatiotemporal resolution in live cells at
subcellular levels should advance our understanding of the

Src functions in response to mechanical stimulations.

3 Src and adherens junction ( AJ)

The permeability of endothelium and consequently ath-

erosclerosis involves EC junctions "’

. Among the three
major types of intercellular connections, viz., adherens
junction (AJ), gap junction, and tight junction™™’  AJ is
the most ubiquitous'””’. In ECs, AJ is mainly comprised of
a membrane receptor VE-cadherin, with its intracellular do-
main separated into the juxtamembrane domain ( JMD)
and the catenin-binding domain (CBD). JMD provides pu-

ctn

tative docking sites for p120“", which is a substrate mole-
cule for Src. CBD binds directly to p-catenin and y-cate-
nin, which possibly bridge the VE-cadherin complex to ac-
tin-based cytoskeleton™*****

Active Src perturbs the cadherin-mediated cell-cell ad-
hesion. For example, AJ was severely deteriorated in v-

[100-101

Src transformed fibroblasts I. Constitutively active Src
protein also caused the tyrosine phosphorylation of E-cad-
herin and a concurrent loss of cell-cell contact''!. Further,
ERK is

Ce"S[mz-l(m]

constitutively activated in  Src-transformed
The SH2/SH3 domains of Src can recruit"™’
and activate ERK, resulting in the phosphorylation of a
ERK substrate molecule myosin light chain kinase ( ML-
CK) ™. The phosphorylation of MLCK ultimately leads to
the phosphorylation of myosin light chain (MLC) and acti-
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vation of actomyosin machinery to cause the in situ con-
tractility and the breakage of AJ"'’. Shear stress has been
shown to activate both Src and ERK in BAECs"*'™’ | It is,
however, not clear how mechanical force activates Src,
ERK and MLCK in space and time to regulate AJ.

4 Src and polarized protrusion

Src contributes to cell protrusion and migration in many
ways. Src, mediated by FAK, can phosphorylate p130cas,
which recruits Crk and DOCK180 through the interaction of
SH3 domain on Crk and PXXP motif on DOCKIS0.
DOCKI180 subsequently binds to ELMO and activates Rac,

7] Recent

which leads to the activation of Wavel/Scarl!
results indicate that Src can also directly phosphorylate
Scarl1"'®!, Activated Scarl can bind to and activate Arp2/3,
which causes the branching growth of actin filaments and
the formation of actin arcs adjacent to plasma mem-

brane!''”"!

. The polymerized actin filaments bend beneath
membrane and the subsequently accumulated thermody-
namic energy in situ may eventually promote the protrusion

of lipid layer at the leading edge along migration direc-

tiont'*®

S  Fluorescence resonance energy transfer
( FRET )
(FPs)

FRET occurs when two fluorophores are in proximity,

and fluorescent proteins

with the emission spectrum of the donor overlapping the ex-
citation spectrum of the acceptor "), Any change of the
distance and/or relative orientation between these two flu-
orophores can affect the efficiency of FRET and therefore,

"I Previous stud-

the ratio of acceptor-to-donor emissions'
ies have shown that fusion proteins with interacting peptide
partners sandwiched between two different FPs are capable
of monitoring various cellular events in live cells with high

65.74.1219] " The most popular

spatial and temporal resolution'
FPs for FRET pair at the current stage are the cyan FP
(CFP) serving as the donor and the yellow FP (YFP) as
the acceptor. However, the dynamic range of most geneti-
cally-encoded biosensors is limited ( typically 20-40%
change upon stimulation) and hence has hindered their

broad applications.

6 An improved FRET pair

A new FRET pair, CyPet and YPet, was recently de-

veloped through the screening of diverse libraries. This
new pair allows the ratiometric FRET signals 20 fold higher
than its parental ECFP/EYFP pair at room tempera-

However, CyPet is deficient at 37 C and not suit-
[121]

ture!'’,
able for live cell imaging' ~'. We hence paired YPet with
ECFP. Several folds increase in sensitivity has been ob-
served in biosensors for a variety of molecules, including
Src, MT1-MMP, Ca’*, and the small GTPase Racl'™'.
As such, these ECFP/YPet-based biosensors can provide
much improved sensitivities to visualize the spatiotemporal
activation of signaling molecules in live cells under different

stimulations.

7 Multiple FRET imaging

The ECFP/YPet-based biosensors, however, only al-
lows the visualization of one active molecular event in a sin-
gle live cell. To visualize multiple molecular events in a
simultaneous fashion, biosensors with new FRET pair need
to be developed. FPs with different excitation and emission
wavelengths have been recently developed through direct-

123-124]

ed evolutionary strategies' . Among these FPs, mOr-
ange and mCherry appear to have the potential to serve as
a new FRET pair besides CFP and YFP. However, mOr-
ange has poor photostability'**’. Four mutantions ( Q64H,
F99Y, E160K, and G196D) have hence been introduced
into mOrange to generate mOrange2, which displays dras-
tically enhanced photostability and almost identical spectral

characteristics relative to the original mOrange'"**’

. Hence,
mOrange2 and mCherry may serve as a new FRET pair
spectrally distinguishable from ECFP and YPet. We have
replaced the ECFP/YPet FRET pair for the FRET biosen-
b2 As such, the

ECFP/YPet-based biosensors and mOrange2/mCherry-

sors with mOrange2 and mCherry

based biosensors can be simultaneously visualized in a sin-
gle live cell.

8 Shear stress and FRET imaging in live
cells

Recently, FRET techniques have been applied to visu-
alize signal transduction in response to shear stress. For
example, GFP-fused Rac and Alexa568-p21-binding do-
main of PAK1 (PBD) were used to monitor the Rac activa-
tion in live cell by measuring FRET between GFP to Al-
exa568''”!. With this FRET-based biosensor, shear stress

was shown to induce a directional activation of Rac concen-
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trated at the leading edge of the cell along flow direc-

tion'"™!. Shear stress has also been shown to induce a po-
larized Cdc42 activation along flow direction visualized by
the FRET between a GFP-Cdc42 and an Alexa568-
PBD!"",

fused relA and EYFP-fused IkBa was used to monitor the

In another study, a separated pair of ECFP-

interaction of relA and IkBa. The FRET efficiency between
ECFP-relA and EYFP-IkBa decreased upon shear stress
application, indicating a mechanical-force-induced dissocia-
tion of relA and IkBa'™*'. CFP and YFP have also been
fused to human B, bradykinin receptor, a G protein-coupled
receptor ( GPCR), to detect the activation of GPCR.
Shear stress was shown to activate B, bradykinin GPCR
within 2 min, which can be inhibited by B, -selective antago-
nist”™’. These results suggest that B, bradykinin GPCR
may serve as a mechano-sensing molecule in response to

shear stress.

9 Conclusion and future directions

Genetically encoded biosensors based on FRET have
allowed the successful visualization of various signaling e-
vents in live cells with high temporal and spatial resolu-

tion 74 112-114]

However, given the limited number of FPs
suitable for FRET, most studies conducted to date allow for
the visualization of only a single type of active molecular
event in live cell systems. Integrating the mOrange2/
mCherry and ECFP/YPet FRET pairs, two active signaling
events can be visualized simultaneously in a single live cell
at subcellular levels. This is particularly important given that
molecular interactions and their biological functions in live
cells are largely dependent on their subcellular location/en-
vironment, possibly due to the different sets of mediator
molecules at different subcellular locations. This notion is
underscored by recent findings that () Src induces the
p190RhoGAP activation and subsequently inhibits RhoA at
the focal adhesion sites'’’, whereas Src activates RhoA at
podosomes'®’ ; (2 RhoA couples with its downstream mole-
cule ROCK at the cell rear and a contractile region behind
lamellipodium, but co-localizes with another substrate mol-
ecule mDia at the leading edge of a migrating cell’"*"’.
Hence, simultaneous visualization of molecular events in a
single cell at subcellular regions will provide invaluable in-
formation for our systematic understanding of molecular
mechanism and cell signaling in regulating pathophysiologi-
cal consequences under different flows. Since ECs are crit-

ical for cardiovascular diseases, including atherosclerosis
and restenosis, the FRET imaging results of ECs should al-
so provide rational basis for developing new ways to treat
these diseases. It is expected more and more novel FRET
biosensors will be developed and these biosensors will also
provide powerful tools for detecting cardiovascular diseases
as well as the efficacy of therapeutic drugs.
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