慢性非特异性腰痛的坐姿压力分析:基于Swin Transformer的评估方法
DOI:
CSTR:
作者:
作者单位:

1.上海中医药大学附属曙光医院;2.上海市伤骨科研究所;3.上海中医药大学附属岳阳中西医结合医院;4.上海交通大学医学院附属瑞金医院

作者简介:

通讯作者:

中图分类号:

基金项目:


Analysis of sitting pressure in chronic non-specific low back pain: an evaluation method based on Swin Transformer
Author:
Affiliation:

1.Department of Orthopaedics, Shanghai Institute of Traumatology and Orthopaedics;2.Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.;3.Yue yang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine;4.Ruijin Hospital

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:慢性非特异性腰痛(cNSLBP)是一种以疼痛和功能受限为主要表现的常见疾病,目前对其病情的评估多依赖主观量表,缺乏客观指标。本研究旨在通过采集受试者的坐姿压力数据,结合Swin Transformer神经网络模型,提出一种基于压力数据的cNSLBP病情客观评估方法。 方法:研究招募了100名cNSLBP受试者,利用压敏传感器阵列采集其在坐姿前倾、后仰、左倾、右倾及正坐五种姿势下的压力数据,并将其转化为压力图像。通过数据预处理和增强方法,构建了包含多层次特征的压力数据集。采用Swin Transformer模型对压力图像进行分析,提取特征并预测病情程度,并与传统卷积神经网络进行对比。 结果:Swin Transformer模型在cNSLBP患者压力数据集上取得了0.1368的平均绝对误差(MAE),显著优于传统卷积神经网络模型。通过数据增强方法,模型在样本量有限的情况下表现出较强的泛化能力,能够有效区分患者病情的严重程度。 结论:基于Swin Transformer的坐姿压力数据分析方法能够准确评估cNSLBP患者的病情严重程度,为临床提供了一种客观、高效的辅助诊断方式,可更好地指导慢性非特异性腰痛的临床诊疗。

    Abstract:

    Objective: Chronic non-specific low back pain (cNSLBP) is a common disease characterized by pain and functional limitations. Currently, the evaluation of its condition mostly relies on subjective scales and lacks objective indicators. This study aims to propose an objective evaluation method for cNSLBP based on pressure data by collecting patients' sitting pressure data and combining it with Swin Transformer neural network model. Method: A total of 100 patients with cNSLBP were recruited for the study, and pressure data were collected using a pressure-sensitive sensor array in five sitting positions: forward leaning, backward leaning, left leaning, right leaning, and sitting. These data were then converted into pressure images. A stress dataset containing multi-level features was constructed through data preprocessing and enhancement methods. Using Swin Transformer model to analyze pressure images, extract features and predict the severity of the disease, and compare it with traditional convolutional neural networks. Result: The Swin Transformer model achieved a mean absolute error (MAE) of 0.1368 on the cNSLBP patient pressure dataset, significantly better than traditional convolutional neural network models. Through data augmentation methods, the model exhibits strong generalization ability in limited sample sizes and can effectively distinguish the severity of patient conditions. Conclusion: The sit pressure data analysis method based on Swin Transformer can accurately evaluate the severity of cNSLBP patients, providing an objective and efficient auxiliary diagnostic method for clinical practice, and can better guide the clinical diagnosis and treatment of non-specific low back pain. Keywords chronic non-specific lower back pain; Sitting pressure; Disease assessment

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-03-16
  • 最后修改日期:2025-04-17
  • 录用日期:2025-04-21
  • 在线发布日期:
  • 出版日期:
文章二维码
关闭