基于长短时记忆模型与无标记动作捕捉系统估算跑步地面反作用力曲线
DOI:
CSTR:
作者:
作者单位:

北京体育大学 运动人体科学学院

作者简介:

通讯作者:

中图分类号:

基金项目:


Estimating Running Ground Reaction Forces Curves Using a Long Short-Term Memory Neural Network and Markerless Motion Capture System
Author:
Affiliation:

Sport Science School,Beijing Sport University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 应用长短时记忆神经网络(Long Short-Term Memory,LSTM)模型,以无标记动作捕捉系统所得下肢关节点坐标作为输入变量,估算跑步过程中的地面反作用力(Ground Reaction Forces, GRF)曲线。方法 采用无标记动作捕捉系统和三维测力台同步采集59名业余跑者跑步动作下的视频图像和动力学数据。建立LSTM模型,以Theia3D无标记动捕系统获取的11个下肢关节点三维坐标作为输入变量估算跑步支撑阶段三维GRF曲线。使用相关系数、均方根误差和以及其标准化值评估LSTM模型的估算效果,采用统计参数映射分析LSTM模型估算和实测曲线的差异,采用配对样本t检验分析模型估算与实测GRF特征差异。结果 LSTM模型估算所得GRF与实测值之间高度相关(r>0.85,P<0.001)且误差较小(均方根误差<0.3倍体重,标准化均方根误差<15%)。LSTM模型估算所得GRF曲线与实测曲线之间不存在显著差异区间。基于LSTM估算曲线计算所得GRF特征与实测值不存在显著差异(P>0.372)。结论 基于LSTM模型,可从Theia3D无标记动捕系统获取的下肢关节点三维坐标有效估算人体跑步时的地面反作用力曲线,并获得准确性较高的地面反作用力特征。本研究建立的LSTM模型可以用本于户外环境下监控跑步过程中的损伤风险。

    Abstract:

    Objective To determine the validity of ground reaction forces (GRF) during running estimated from 3D lower body landmark coordinates obtained via a markerless system using the Long Short-Term Memory (LSTM) neural network model. Methods 59 recreational runners were recruited. The video and GRF during running were collected by the motion capture system and force plates (FP). The 3D coordinates of 11 lower body landmarks, obtained via the markerless system, were used as inputs in LSTM model to estimate 3D GRF. The estimation performance was evaluated using correlation coefficients r, root mean square error (RMSE) and normalized root mean square error (nRMSE) by comparing LSTM model estimation and FP measurement. Statistical Parametric Mapping was used to analyze differences in GRF curves between the LSTM model and FP, while paired t-tests assessed differences in GRF characteristics. Results A strong correlation (r>0.85,P<0.001) and lower error (RMSE<0.3 Body Weight,nRMSE<15%) was found between the LSTM model estimation and FP measurements. No significant difference area was found in GRF curves between LSTM model estimation and FP measurements. About the GRF characteristics, there was no significant difference between LSTM model estimation and FP measurements(P>0.372). Conclusion With the 3D coordinates of lower body landmarks based on markerless system as inputs,the 3D GRF curves could be accurately estimated by LSTM model. The LSTM model developed in this study can be used to monitor running injury risks in outdoor environments.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-03-02
  • 最后修改日期:2025-03-25
  • 录用日期:2025-03-31
  • 在线发布日期:
  • 出版日期:
文章二维码
关闭