基于硬边界约束物理信息神经网络狭窄动脉血管的血液流场预测
DOI:
CSTR:
作者:
作者单位:

河北工业大学 机械工程学院

作者简介:

通讯作者:

中图分类号:

基金项目:


Prediction of Blood Flow Field in Artery Stenosis Based on Hard Boundary-Constrained Physics-Informed Neural Network
Author:
Affiliation:

School of Mechanical Engineering,Hebei University of Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的狭窄血管的血流动力学参数精准预测对动脉粥样硬化等心血管疾病的诊断和治疗具有重要临床价值。针对传统物理信息神经网络在处理血流边界条件约束时的局限性,本研究提出了一种基于硬边界约束物理信息神经网络(Hard Boundary-Constrained Physics-Informed Neural Network, HBC-PINN)的改进方法实现对狭窄动脉血管内血液流场的精确预测,为发展高效可靠的生物医学流体数值计算方法提供了新思路。方法首先建立理想化狭窄血管几何模型并进行CFD模拟以获得验证数据集,根据硬约束方法设计合适的边界相关试函数以将流动边界条件嵌入网络输出中,从而构建采用硬边界约束方法的HBC-PINN模型预测狭窄血流的速度场和压力场,同时还构建了采用软约束方法的原始PINN模型作为对比,通过评估两种模型在验证数据集上的准确性,验证不使用任何标记数据训练下HBC-PINN模型模拟血流动力学的能力。结果确定了HBC-PINN方法在狭窄血流动力学参数预测任务中的有效性。两种不同狭窄情况下HBC-PINN预测的流向速度和压力的相对L2误差均低于0.5%,相比原始PINN模型精度提升了48.8%以上,垂向速度的预测精度同样提升了超过35.4%。结论在PINN建模过程中实施边界条件硬约束可以有效提高对血流动力学参数的预测精度和模型求解效率。

    Abstract:

    Objective Accurate prediction of hemodynamic parameters in stenotic blood vessels holds critical clinical significance for the diagnosis and treatment of cardiovascular diseases such as atherosclerosis. To address the limitations of conventional Physics-Informed Neural Networks in handling hemodynamic boundary constraints, this study proposes an improved hard boundary-constrained physics-informed neural network (HBC-PINN) framework to achieve precise prediction of blood flow fields within stenotic arteries, providing new perspectives for the development of efficient and reliable biomedical fluid numerical calculation methods. Methods An idealized stenosed vessel geometry model was established and CFD simulation was performed to obtain a validation dataset. Appropriate boundary dependent trial functions were designed according to the hard constraint method to embed the flow boundary conditions into the network output. Thus, an HBC-PINN model with the hard boundary constraint method was constructed to predict the velocity field and pressure field of stenosed blood flow. Meanwhile, an original PINN model with the soft constraint method was also built for comparison. By evaluating the accuracy of the two models on the validation dataset, we verified the capability of the HBC-PINN model to simulate hemodynamics without using any labeled data for training. Results The effectiveness of the HBC-PINN method in predicting hemodynamic parameters in stenosed blood flow tasks has been validated. The relative L2 errors of the flow velocity and pressure predicted by the HBC-PINN in two different stenosis scenarios were both lower than 0.5%, representing an improvement of over 48.8% in accuracy compared to the original PINN model. Additionally, the prediction accuracy of the transverse velocity also increased by more than 35.4%. Conclusions Implementing hard constraints on boundary conditions in the PINN modeling process can effectively improve the prediction accuracy of hemodynamic parameters and the efficiency of model solving.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-02-26
  • 最后修改日期:2025-03-24
  • 录用日期:2025-03-25
  • 在线发布日期:
  • 出版日期:
文章二维码
关闭