基于迁移学习与呼吸音特征识别的机械通气吸痰时机判别
DOI:
CSTR:
作者:
作者单位:

北京航空航天大学医学科学与工程学院,北京生物医学工程高精尖创新中心,北京

作者简介:

通讯作者:

中图分类号:

基金项目:


Determination of sputum aspiration timing in mechanical ventilation based on transfer learning and recognition of breath sounds
Author:
Affiliation:

School of Engineering Medicine, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:使用呼吸机进行机械通气的过程中,建立人工气道会降低患者的呼吸道分泌物排出能力,容易造成痰液淤积。目前临床上主要依赖医生对呼吸音进行听诊,来判断患者的吸痰需求。本文提出基于迁移学习的呼吸音特征识别与吸痰时机自主判断方法。 方法:使用电子听诊器采集临床机械通气患者在吸痰前、后的主气道呼吸音,以前者表征需要吸痰时机。对采集数据进行高通滤波和小波软阈值滤波去噪,提取对数梅尔频谱图,并利用在Audio Set数据集上预训练的VGGish模型提取对数梅尔频谱图的特征向量,最后通过支持向量机分类器对特征向量进行分类,判断是否需要吸痰。 结果:实验结果显示,对需要吸痰的呼吸音识别的精确率、召回率和F1 score分别为86.73%,93.06%和89.78%。 结论:基于迁移学习的呼吸音识别方法能够有效判断吸痰时机,具有潜在的临床意义。

    Abstract:

    Objective: During mechanical ventilation with a respirator, the establishment of an artificial airway can impair patients’ ability to expel secretions, easily leading to sputum accumulation. In current clinical practice, physicians primarily rely on auscultation of breath sounds to determine the need for sputum suction. This study proposes a transfer learning-based method for breath sound feature recognition and autonomous determination of sputum suction timing. Methods: An electronic stethoscope was used to collect breath sounds from the main airways of clinically ventilated patients before and after sputum suction, with the pre-suction sounds indicating the need for suction. The collected data underwent high-pass filtering and wavelet soft-threshold denoising, followed by the extraction of log-Mel spectrograms. A VGGish model pretrained on the Audio Set dataset was then employed to extract feature vectors from these spectrograms, which were subsequently classified using a support vector machine to determine whether suction was required. Results: Experimental results showed that the precision, recall and F1 score for recognition of breath sounds requiring sputum suction were 86.73%, 93.06% and 89.78%, respectively. Conclusion: The proposed breath sound recognition method based on transfer learning effectively determines the timing of sputum suction and shows significant clinical potential.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-07
  • 最后修改日期:2025-02-11
  • 录用日期:2025-02-20
  • 在线发布日期:
  • 出版日期:
文章二维码
关闭