数据驱动建模的地面切向作用力估计
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(12372065, 12372022)


Estimation of Tangential Ground Reaction Force by Data-Driven Modeling
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 建立从下肢运动学数据估算切向地面反作用力(GRFt)的数据驱动模型,并从输入数量与估计精度的角度出发选择最合适的输入,以实现在户外步态实验中测量GRFt。方法 利用10名受试者在5个不同坡度(-10°、-5°、0°、5°、10°)下的步态数据,训练反向传播神经网络(backpropagation neural network, BPNN)和多项式稀疏回归(polynomial sparse identification, PSI)模型两种数据驱动模型,用以估算GRFt。评估8种运动学数据组合与法向地面作用力(GRFn)作为模型输入的性能结果,以确定最佳的模型和模型输入。结果 在相同输入维度下,髋-膝关节角度组合比膝-踝关节角度组合更能准确地估算GRFt。具体而言,基于前者组合的BPNN和PSI模型预测GRFt的误差分别为1.61%BW(体重)和1.84%BW,而基于后者组合的模型误差分别为2.82%BW和3.15%BW。将GRFn与所有关节角度作为输入,模型的预测误差仅为1.46%BW。结论 GRFn与髋-膝关节角度的组合在计算复杂度和估计精度之间实现了最佳平衡。研究结果有助于实现在室外步态测试中准确估算GRFt。

    Abstract:

    Objective To develop a data-driven model for estimating tangential ground reaction force (GRFt) from lower limb kinematic data and select the most suitable input based on a balance between input quantity and estimation accuracy, with the aim of measuring GRFt in outdoor gait experiments. Methods Gait data from ten subjects walking at five different inclines (-10°, -5°, 0°, 5°, 10°) were used to train two data-driven models, namely a backpropagation neural network (BPNN)-based model and a polynomial sparse identification (PSI)-based model. The performance of these models was evaluated using eight kinematic data combinations and the normal ground reaction force (GRFn) as inputs to determine the optimal model and input combination. Results Under the same input dimensionality, the combination of hip-knee joint angles proved more accurate in estimating GRFt than the knee-ankle joint angle combination. Specifically, the BPNN and PSI models based on the former combination predicted GRFt with errors of 1.61%BW (body weight) and 1.84%BW, respectively, while the latter combination resulted in errors of 2.82%BW and 3.15%BW. When GRFn and all joint angles were used as inputs, the model’s prediction error was only 1.46%BW. Conclusions The combination of GRFn and hip-knee joint angles achieves an optimal balance between computational complexity and estimation accuracy. This study supports the accurate estimation of GRFt in outdoor gait testing.

    参考文献
    相似文献
    引证文献
引用本文

吕阳,陆畅,张晓旭,陈文明,徐鉴.数据驱动建模的地面切向作用力估计[J].医用生物力学,2025,40(1):148-155

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-10
  • 最后修改日期:2024-10-06
  • 录用日期:
  • 在线发布日期: 2025-02-26
  • 出版日期:
文章二维码
关闭