基于深度学习融合的异常步态识别研究
DOI:
CSTR:
作者:
作者单位:

1.上海工程技术大学 机械与汽车工程学院 上海;2.同济大学附属养志康复医院上海阳光康复中心 转化研究中心 上海

作者简介:

通讯作者:

中图分类号:

基金项目:


The Research on abnormal gait recognition based on deep learning fusion
Author:
Affiliation:

1.School of Mechanical and Automotive Engineering,Shanghai University of Engineering Science;2.Translational Research Center,Yangzhi Rehabilitation Hospital Shanghai Sunshine Rehabilitation Center,Tongji University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 针对患者与健康人运动步态个性化差异以及异常步态的识别问题,本文提出一种基于深度学习的有效解决方案。方法 本文采用融合卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的模型,采集健康老年人和脑卒中患者在舒适范围内的不同步速下单侧踝关节运动数据,将惯性传感器和肌电传感器信号作为模型输入;同时分析步态特征值,比较两者步态差异。通过对比GRU、LSTM和CNN-BiLSTM模型在异常步态识别中的分类性能,以验证模型的有效性。结果 CNN-BiLSTM模型在异常步态识别中的表现优异,整体准确率达到95.40%。结论 结果表明本研究提出的算法可以用于早期疾病检测等相关领域,为疾病的早期诊断和精准监测提供支持。

    Abstract:

    Objective Addressing the personalized differences in motion gait between patients and healthy individuals, as well as the issue of abnormal gait recognition, this paper proposes an effective solution based on deep learning. Methods The study adopts a model that fuses Convolutional Neural Networks (CNN) and Bidirectional Long Short-Term Memory Networks (BiLSTM) networks. It collects unilateral ankle joint movement data at different walking speeds within a comfortable range from healthy elderly individuals and stroke patients. The model uses signals from inertial sensors and electromyography sensors as inputs, while also analyzing gait features and comparing gait differences between the two groups. The effectiveness of the model is validated by comparing the classification performance of GRU, LSTM, and CNN-BiLSTM models in abnormal gait recognition. Results The CNN-BiLSTM model performs excellently in abnormal gait recognition, achieving an overall accuracy of 95.40%. Conclusion The results suggest that the algorithm proposed in this study can be applied to early disease detection and other related fields, providing support for early diagnosis and precise monitoring of diseases.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-17
  • 最后修改日期:2025-02-21
  • 录用日期:2025-02-21
  • 在线发布日期:
  • 出版日期:
文章二维码
关闭