基于物理信息神经网络的颅内动脉瘤血流动力学模拟
DOI:
作者:
作者单位:

1.上海理工大学健康科学与工程学院;2.国防科技大学 电子科学学院;3.上海理工大学 上海介入医疗器械工程技术研究中心;4.上海长海医院 脑血管病中心;5.上海理工大学 健康科学与工程学院

作者简介:

通讯作者:

中图分类号:

基金项目:


Hemodynamic simulation on patient-specific intracranial aneurysms using physics-informed neural network
Author:
Affiliation:

1.School of Health Science and Engineering, University of Shanghai for Science and Technology;2.School of Electronic Science, National University of Defense Technology;3.Shanghai Interventional Medical Device Engineering Technology Research Center, University of Shanghai for Science and Technology;4.Cerebrovascular Disease Center, Changhai Hospital of Shanghai

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 使用基于物理信息神经网络(physics-informed neural network, PINN)的模型预测颅内动脉瘤血流动力学,解决传统计算流体力学(computational fluid dynamics, CFD)仿真耗时长、计算成本高的问题。方法 仅使用临床患者的CFD数据中的计算域坐标和稀疏速度测量点训练PINN模型,并比较PINN模型预测的血流速度、压力和壁剪切应力(wall shear stress, WSS)与CFD仿真结果的差异。结果 该方法在四个不同患者的数据上进行了测试与验证,模型在速度预测中的平均绝对误差(平均MAE)为4.60%,平均均方误差(平均MSE)为6.61% 和平均均方误差(平均MSE)为0.229%。对于WSS预测,平均MAE为5.54%,平均MRE为8.58%,平均MSE为0.510%。PINN模型在不同动脉瘤模型上有较好的泛化性,且能将血流动力学的计算时间从数小时压缩至数秒。结论 PINN模型能够在边界条件未知且测量数据稀疏的情况下,通过物理约束有效地补偿不完整的测量信息,快速并准确模拟颅内动脉瘤的血流动力学情况。该方法有望在颅内动脉瘤临床风险预测中提供有效的辅助支持。

    Abstract:

    Objective To use a physics-informed neural network (PINN)-based model to predict hemodynamics in intracranial aneurysms and address the long simulation time and high computational cost of traditional computational fluid dynamics (CFD) simulations. Methods The PINN model was trained using only the computational domain coordinates and sparse velocity measurement points from CFD data of clinical patients. The predicted blood flow velocity, pressure, and wall shear stress (WSS) from the PINN model were compared with CFD simulation results. Results The proposed method was tested and validated on data from four different patients. For velocity prediction, the average mean absolute error (average MAE) was 4.60%, the average mean relative error (average MRE) was 6.61%, and the average mean squared error (average MSE) was 0.229%. For WSS prediction, the average MAE was 5.54%, the average MRE was 8.58%, and the average MSE was 0.510%. The PINN model demonstrates good generalization capability across different aneurysm models and can reduce the computation time of hemodynamics from several hours to just a few seconds. Conclusions The PINN model can effectively compensate for incomplete measurement data through physical constraints, even when boundary conditions are unknown and measurement data are sparse. It can rapidly and accurately simulate the hemodynamics of intracranial aneurysms. This method has the potential to provide effective support for clinical risk prediction in intracranial aneurysms.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-11
  • 最后修改日期:2024-11-18
  • 录用日期:2024-11-20
  • 在线发布日期:
  • 出版日期:
文章二维码
关闭