Abstract:Objective To establish a method for efficient simulation of orthodontic alveolar bone reconstruction. Methods A complete dental and periodontal model of a single incisor and molar was established, and displacement-controlled and force-controlled loading for distalization was simulated. According to the external reconstruction theory and the periodontal ligament (PDL) strain theory, alveolar bone reconstruction was simulated using the UMESHMOTION subroutine in ABAQUS combined with the adaptive mesh technology (ALE). Results In displacement-controlled mode, the initial distal displacement load of 50 μm could be achieved by the bone reconstruction algorithm to achieve distal alveolar bone reconstruction displacement of 50 μm. In force-controlled mode, the final displacement of the single-rooted tooth and double-rooted tooth was 67.5 μm and 23.77 μm, respectively, under the condition of applying the 1 N initial distal force and considering the final decline to 50% of the initial force level. In both modes, the absolute maximum principal stress on PDL returned to 0 stress level after bone reconstruction, and the PDL reached a new mechanical equilibrium. This algorithm could simulate the alveolar bone reconstruction process of single-rooted tooth and double-rooted tooth in a short period. At the osteogenesis-osteogenesis ratio of 7︰5, a stable reconstruction process could be obtained when the displacement of a single iterative displacement was controlled at 0.1 μm. Conclusions The proposed method achieved the the simulation of double-rooted alveolar bone reconstruction for the first time, and the process of alveolar bone reconstruction could be simulated well under displacement and decayed force controls, thereby serving as an effective tool for designing orthodontic force systems with or without brackets.