Abstract:Dendritic cells (DCs) are now known as the most powerful antigen-presenting cells in vivo, with efficient antigen uptaking, and processing capabilities. They can present antigens to na?ve T cells in secondary lymphoid tissues, thereby induce immune response or tolerance, and play a key role in initiating and amplifying innate and adaptive immunity. DCs experience complex chemical and mechanical microenvironment changes and show different mechanophenotypes and immunophenotypes in the process of exerting their physiological functions. Deeply understanding the chemical and mechanical factors that regulate the mechanophenotypes and immunophenotypes of DCs is a prerequisite for using DCs to treat immune related diseases. In this review, the progress in the biomechanics and mechanobiology research of DCs was mainly introduced, and their potential applications and future development directions in the treatment of immune related diseases were explored.