脑Willis环集中参数模型的参数识别算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(11872152, 32071310)


Parameter Identification Algorithm of Lumped Parameter Model in the Circle of Willis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 探索3种参数识别方法(阻抗模曲线法、阻抗分量法、遗传算法)在脑Willis环11单元集中参数模型参数识别问题求解上的应用。方法 以两侧颈内动脉、椎动脉的流量和压力波形为入口条件,计算正常、两侧椎动脉狭窄情况下模型的参数值,使用Simulink建模对识别算法进行验证,最后对流量加一定噪声验证识别算法的稳定性。结果 正常情况下,阻抗模曲线法获得的近端阻力偏大,阻抗分量法求解的前交通动脉阻力偏大,遗传算法能获得比较合理的模型参数值。两侧椎动脉狭窄情况下,使用阻抗模曲线法能明显得到后循环近端阻力增加的结果,但使用阻抗分量法和遗传算法所得的结果主要是远端阻力有较大增幅。结论 3种方法识别出的参数计算出的压力数据和实际数据仍有差别,考虑为建模误差、源数据误差和计算误差。阻抗模曲线法在区分近端阻力变化上有一定效果,但是某些参数的识别上有较大误差。阻抗分量法能够进行参数识别,但方法不稳定,计算误差较大。遗传算法能获得比较好的近似解,但在区分椎动脉狭窄上存在一定问题。综合阻抗模曲线法和遗传算法可能在未来使用模型进行疾病诊断上发挥比较好的作用。

    Abstract:

    Objective To explore the application of three parameter identification methods (impedance modulus curve method, impedance component method, and genetic algorithm) in solving parameter identification problem of the 11-element lumped parameter model in the circle of Willis. Methods Using the flow and pressure waveforms of the internal carotid arteries and vertebral arteries on both sides as inlet conditions, parameter values of the model under normal and bilateral vertebral artery stenosis conditions were calculated. The recognition algorithm was verified by using Simulink models, and finally the stability of the recognition algorithm was verified by adding a certain noise to the flow. Results Under normal circumstances, the proximal resistances obtained by the impedance modulus curve method were larger, and the resistances of the anterior communicating artery obtained by the impedance component method were larger. The genetic algorithm could obtain relatively reasonable model parameter values. In the case of vertebral artery stenosis on both sides, the impedance modulus curve method could obviously get the results of the increasement in proximal resistances of the posterior circulation, but the results obtained by the impedance component method and the genetic algorithm mainly lied in that the distal resistance had a larger increase. Conclusions There are still differences between the pressure data calculated by the parameters identified by the above three methods and the actual data, which are considered as modeling errors, source data errors and calculation errors. The impedance modulus curve method has a certain effect in distinguishing changes of the proximal and distal resistances, but there exist large errors in identification of some parameters. The impedance component method can identify the parameters, but this method is unstable with large calculation errors. Genetic algorithm can obtain a better approximate solution, but it has certain problems in distinguishing vertebral artery stenosis. The combination of impedance modulus curve method and genetic algorithm may play a better role in future application of this model for disease diagnosis.

    参考文献
    相似文献
    引证文献
引用本文

秦旺,余龙,王盛章,付建辉.脑Willis环集中参数模型的参数识别算法[J].医用生物力学,2022,37(3):410-418

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-07-16
  • 最后修改日期:2021-07-28
  • 录用日期:
  • 在线发布日期: 2022-06-24
  • 出版日期:
文章二维码
关闭