离体猪气管异向力学特性及数值模拟研究
DOI:
作者:
作者单位:

1.哈尔滨医科大学附属第一医院;2.哈尔滨理工大学 先进制造智能化技术教育部重点实验室

作者简介:

通讯作者:

中图分类号:

基金项目:


Numerical simulation of superelastic model based on mechanical properties of real pig Trachea
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 研究猪气管和主支气管各项异性的力学性能,通过有限元数值模拟确定描述气管变形的本构模型。方法 将收集的猪气管沿着气管轴向剖开并展成平面,以展开后的气管长度方向0°为起始角度,逆时针方向分别获得30°、60°、90°、120°、150°、180°共6个角度方向的标本。利用电子万能试验机分别对猪离体气管和主支气管的6个角度方向标本,以10mm/min的加载速率进行单轴拉伸试验,获得气管和主支气管在不同角度方向的应力和应变,采用Mooney-Rivilin超弹性模型对实验数据进行非线性拟合。利用得到的Mooney-Rivilin模型材料特性参数,建立气管和主支气管有限元模型,并进行拉伸数值模拟。结果 不同角度的标本拉伸呈现出不同的应力-应变;在气管中,30°、120°和150°方向样本的应力范围为1-1.5MPa,60°和90°方向标本的应力范围为0.5-1MPa,180°方向标本的应力范围为2.5-3.0MPa;在主支气管中,30°、60°和150°方向标本的应力范围为0.8-1MPa,90°和180°方向标本的应力范围为1.4-1.8MPa,120°方向标本的应力范围为0.4-0.6MPa,气管与主支气管有着明显的差异。经有限元模拟验证Mooney-Rivilin本构模型适合于描述气管的小变形行为。结论 实验结果表明猪气管呈现较强的各向异性,研究结果提供了更加可靠全面的气管力学参数,为气管有限元和本构模型的构建提供有利的数据支撑,验证了Mooney-Rivilin模型可以表征气管小变形,同时也为气管接触力学特性研究提供必要的数据参考。

    Abstract:

    Objective To study the mechanical properties of the anisotropic of pig trachea and bronchi, and determine the constitutive model of trachea deformation by finite element numerical simulation. Methods Collect the pig trachea and cut through in their axial directions and expanded into two-dimensional planes. Then, by setting the length direction of the trachea aortas as 0°, each planar trachea was counterclockwise cut into 6 samples with orientation of 30°,60°,90°,120°,150°, and 180°, respectively. The electronic universal testing machine was used to perform uniaxial tensile tests at a loading rate of 10mm/min in 6 angular directions of the isolated trachea and bronchi of adult pigs. The elastic modulus and ultimate stress of the trachea and the bronchi in different directions were obtained, and the Mooney-Rivilin hyperelastic model was used to perform nonlinear fitting to the experimental data. Using the obtained Mooney-Rivilin model material characteristic parameters, finite element models of trachea and main trachea were established and tensile numerical simulation was carried out. Results Samples at different angles show different stress-strain curves. In the trachea, 30°, 120° and 150° are in the range of 1-1.5MPa, 60° and 90° are in the range of 0.5-1MPa, and 180° is in the range of 2.5-3.0MPa; In the main air pipe, 30°, 60° and 150° are in the range of 0.8-1MPa, 90° and 180° are in the range of 1.4-1.8MPa, and 120° is in the range of 0.4-0.6 MPa. There is a clear difference between the trachea and the bronchi. The finite element simulation verifies that the Mooney-Rivilin constitutive model is suitable for describing the small deformation behavior of the trachea. Conclusions The experimental results show that the pig trachea exhibits strong anisotropy, the research results provide a more reliable and comprehensive parameters of tracheal mechanical parameters, and afford favorable data support for the construction of tracheal finite element and constitutive models. Meanwhile, the experimental results verify that the Mooney-Rivilin model can replace small tracheal deformations, and provide the necessary data for the research on trachea contact mechanics characteristics.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-04-09
  • 最后修改日期:2021-07-07
  • 录用日期:2021-07-15
  • 在线发布日期:
  • 出版日期: