Abstract:Objective To investigate the synergistic effects of pathologically elevated cyclic stretch and platelet-derived microvesicles (PMVs) on migration of vascular smooth muscle cells (VSMCs) and the potential role of calcium in this process. Methods The FX-5000T strain loading system was used to apply cyclic stretch to VSMCs with magnitudes of 5% and 15%, which simulated physiological and hypertensive situation respectively in vitro; wound healing assay was used to analyze VSMCs migration; Ca2+-free medium was used to remove extracellular calcium; 2-APB (an antagonist of IP3R) was used to inhibit the release of intercellular stored calcium; GSK219 (an antagonist of TRPV4) and Nifedipine (an inhibitor of L-type voltage-gated calcium channel) were applied to block the activity of respective calcium channel; thrombin was used to stimulate platelets in vitro which simulated the hypertensive activation of PMVs in vivo. ResultsCompared with 5% cyclic stretch, 15% cyclic stretch significantly promoted VSMC migration. Removal of extracellular calcium inhibited VSMCs migration, but the application of GSK219 and Nifedipine did not affect the migration up-regulated by 15% cyclic stretch; while 2-APB which inhibited the release of intracellular stored calcium could also repress VSMCs migration under 15% cyclic stretch. PMVs further promoted VSMC migration under 15% cyclic stretch condition, and both extracellular calcium and intercellular stored calcium were involved in this process. Conclusions Both intracellular and extracellular calcium play important roles in VSMC migration induced by 15% cyclic stretch, and PMVs synergistically participate in the above process. The study is aimed to provide new mechanobiological insights into the molecular mechanism and clinical targets of vascular remodeling in hypertension.