Abstract:Objective To observe changes of surface electromyography (sEMG) in cervical traction under different loading weight and at different angles, and compare the muscle activity changes obtained by experiment with simulation results obtained by AnyBody cervical modeling, so as to verify the rationality of the simulation results. Methods Ten young volunteers with supine cervical traction were selected to test the sEMG signals of bilateral sternocleidomastoid (SCM) and upper trapezius (UT) muscles by using the JE-TB0810 surface EMG device. The average EMG (AEMG) and mean power frequency (MPF) were used to analyze the variation patterns of sEMG in cervical spine. Results The AEMG values of SCM and UT muscles increased as the loading weight and traction angles increasing, with a statistically significant difference (P<0.05). The AEMG values of UT muscles was higher than that of SCM muscles, also with a statistically significant difference (P<0.05). No statistical differences were found in the MPF values at different traction angles and under different loading weight for both SCM and UT muscles (P>0.05). The experimental results were consistent with muscle force activity characteristics of SCM and UT muscles by modeling and simulation of cervical traction. Conclusions The simulation results are reasonable. The traction weight should be loaded reasonably according to the excitation and fatigue of the cervical muscles in clinic. This can both reach the treatment effect and improve the patient’s comfort, which will provide an important reference for further development and improvement of the cervical traction device.