Abstract:Objective To investigate the biomechanical characteristics of the human pelvis-femur complex under lateral pelvic impacts during sideways falls using three dimensional (3D) finite element (FE) method. Methods Based on the model database of China Mechanical Virtual Human, a 3D FE model of the pelvis femur soft tissue complex was created, including cortical bone, cancellous bone and soft tissue capsule. A rigid plane model was also constructed for ground simulation and constrained in all freedoms. The average hip lateral impact velocity of 2 m/s was applied to the model and the time for simulation analysis was set at 20 ms. The stress and strain distribution on the pelvis-femur complex were obtained by the 3D FE calculation and analysis. ResultsOn the contact surface, the peak impact load reached to 7 656 N at 13 ms, while the maximum Von Mises stress on the soft tissue was 2.64 MPa. Simultaneously, the peak Von Mises stress of 142.64 MPa on the cortical bone occurred in the region of pubic symphysis, which was approximate to the yield stress on the cancellous bone. The Von Mises stress level was higher in the region of the femur neck and greater trochanter. At 13 ms, the peak Von Mises stress on the cortical bone of the femur neck was 76.49 MPa and that on the cancellous bone was 8.44 MPa with the peak compressive principal strain being 0.94%. The peak Von Mises stress on the cancellous bone of greater trochanter was 8.50 MPa, while the peak compressive principal strain was 0.93%. Conclusions Bone fractures of the pelvis-femur complex tend to occur in the region of the femur neck, greater trochanter and pubic symphysis under deceleration impacts during sideways falls.