Abstract:Objective To study the effects of the different connecting mode of artificial ossicle on hearing restoration. Method Geometrical model of human ear was established by an original C++ program based on clinical CT data, and imported this geometrical model into finite element software PATRAN to build up the numerical finite element model of human ear structure. Based on the finite element model, the fluidsolid coupling was computed by harmonic response analysis method, and the effect of sound conduction on ear structure was analyzed according to different implantable methods and positions of artificial ossicle. Results The validity of this numerical model is confirmed by comparing the amplitude of umbo and stapes footplate on numerical model which is gained by dynamic response analysis on normal ear structure with published experimental measurements on human temporal bones. ConclusionsConnecting artificial ossicle to tympanic membrane at its central position is optimal for the dynamic response of ear structure as the amplitude of stapes footplate under this situation is slightly higher than other connecting methods since it conforms to physiological function of human ear, and the effect of hearing recovery could be better.