Objective To establish a biomechanical model of stress and bone growing which can be quantificated quantified numerically. Methods Animal experiments, parameter inversion identification of bone growth equation and computer techniques were integrated used. Weto studied study the effects of stress environments on bone growth and remodeling in rapid growing rats. According to the changes of bone mineral density(BMD)of the proximal femur and its loading stimulus, we inversed the unknown parameters (B and K) of bone growth and remodeling equation. Results The model established in this paper study was able could not only numerically to simulate the relationship between outer stimulus and the femur BMD variation of the rapid growing rats, but also to predict the growth trend of rat femur under different stress conditions in a certain periods within its lifecycle. The idea and method used in the model creating in this paper provide some useful clue and reference for establishing human model of bone growth and remodeling.